WEBER SCIENTIFIC

Understanding Chemical Concentrations

We sell a number of chemical solutions (Potassium hydroxide, sodium hydroxide, sodium thiosulfate, etc). There are three common ways of expressing chemical concentrations:

1. Molarity $(\mathbf{M})=$ number of moles per liter.
2. Molality $(\mathbf{m})=$ number of moles per kg of solvent
3. Normality $(\mathbf{N})=$ number of gram equivalents per liter.

A mole of a chemical is equal to its atomic weight. A gram equivalent of a chemical is its atomic weight divided by the valence. You have to be a pretty good chemist to figure out the gram equivalent of a chemical. I usually refer to a chemical reference.

As an easy example we can use Sodium Hydroxide (NaOH).
The atomic weight of $\mathrm{Na}=22.989$
The atomic weight of $\mathrm{O}=15.999$
The atomic weight of $\mathrm{H}=1.007$
TOTAL $=39.995$

To make a $\mathbf{1 M}$ solution of NaOH you add 39.995 gm to 1 liter of water.
To make a $1 \mathbf{m}$ solution of NaOH you add 39.995 to $1000 \mathrm{ml}(1 \mathrm{~L})$ of water. Water is the universal solvent and it has the density (specific gravity) of 1 . That is, 1 mL of water weighs 1 gram. A liter of water weights 1 kg .

To make a 1 N solution of NaOH you add 39.995 gm to 1 liter of water.
So, in this example $\mathbf{1 M}, \mathbf{1 m}$ and $\mathbf{1 N}$ solutions of NaOH are very similar. Other chemicals can be quite different.

