4.5/6.5cf AmphiBlastTM OPERATION AND MAINTENANCE MANUAL June 2020 # SAVE THIS MANUAL AND MAKE AVAILABLE TO ALL USERS OF THIS EQUIPMENT! Manual Part Number 7200-335 Rev. 12/21 (Available for downloading from AxxiomMfg.com) Visit us at www.AxxiomMfg.com Manual # WARNING - 1. Any person intending to operate this equipment or any person intending to be in the vicinity during its operation must receive proper training from his/her supervisor, employer and/or supplier. If this equipment is to be leased or rented, the supplier must assure that the lessee or renter has received proper training before the lessee or renter takes possession of the equipment. Consult Axxiom Manufacturing, Inc. - 2. Any person authorized to operate this equipment or any person intending to be in the vicinity during its operation and who is not capable of reading and understanding this manual must be fully trained regarding the *Rules for Safer Operation* and all operating procedures, and must be made aware of all the Dangers, Warnings, and Cautions identified herein. Consult Axxiom Manufacturing, Inc. - 3. Do Not operate any abrasive blaster or blast equipment before reading and completely understanding all the warnings, operating procedures and instructions, and the *Rules for Safer Operation* contained in this manual. - 4. Do Not operate any abrasive blaster or blast equipment without following the Rules for Safer Operation and all the operating procedures and instructions. Failure to properly use blast equipment could result in serious injury or death. - 5. Do Not perform any maintenance on any abrasive blaster or blast equipment while it is pressurized. Always depressurize the abrasive blaster vessel before loading abrasive or performing any maintenance. - 6. Do Not use abrasives containing free silica. Silica can cause silicosis or other related respiratory damage. All operators must wear personal protective equipment for all abrasive blasting operations. Observe all applicable local, state, and federal safety regulations in conjunction with airline filters and respiratory protection. Reference OSHA 29 CFR 1910.134. - 7. Do Not enter areas during abrasive blasting operations without breathing protection. All personnel in the vicinity of abrasive blasting operations should wear NIOSH approved air fed respirators, hoods, or helmets. - 8. Do Not modify or alter any abrasive blaster, blast equipment or controls thereof without written consent from Axxiom Manufacturing, Inc. - 9. Do Not use bleeder type deadman valves on any Schmidt® abrasive blaster. The use of A-BEC, Clemco or a similar bleeder type deadman valve can cause unintentional start-up without warning, which can result in serious personal injury. - 10. Do Not sell, rent, or operate abrasive blasters without remote controls. OSHA regulations require remote controls on all blast machines. Failure to use remote controls can cause serious injury or death to the operator(s) or other personnel in the blasting area. Reference OSHA 29 CFR 1910.244(b). - 11. Do Not repair or replace any portion of Schmidt® equipment using components that are not Schmidt® original factory replacement parts. Use of replacement components that are not Schmidt® original factory replacement parts may result in equipment failure which can result in serious personal injury and in addition will void all warranties. #### Instructions for use of manual sections This manual contains information needed to operate and maintain your abrasive blaster. Read this entire operations and maintenance manual before using your abrasive blaster. Pay close attention to the *Rules for Safer Operation* (Section 1.0), and the Dangers, Warnings, and Cautions identified. The purpose of safety symbols and explanations are to alert you of the possible hazards and explain how to avoid them. The safety symbols and explanations do not by themselves eliminate any danger. However, following the instructions given and taking proper accident prevention measures will greatly lower the risk of injury to personnel. Below are the three hazard levels as used in this manual. ### **▲** DANGER #### WHITE LETTERS with RED BACKGROUND DANGER: Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is limited to the most extreme situations. # **AWARNING** #### BLACK LETTERS with ORANGE BACKGROUND WARNING: Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. # **▲** CAUTION #### BLACK LETTERS with YELLOW BACKGROUND CAUTION: Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices that may cause property damage. ### NOTICE #### WHITE LETTERS with BLUE BACKGROUND NOTICE: Indicates that equipment could malfunction or potentially become damaged if certain instructions are not followed. This manual contains terms that may be specific to the abrasive blast industry. Understanding these terms will help you understand the procedures and instructions given in this manual. Please familiarize yourself with the following terms and refer to them as needed while reading this manual. | • | | |-------------------------|---| | Term | Definition | | Pressure | A fabricated tank (or reservoir) that is part of the abrasive blaster which is filled | | Vessel | with compressed air and abrasive. (Also referred to as "blast vessel" or "vessel".) | | Pressurize | To manually or automatically fill the abrasive blast vessel with compressed air. | | Depressurize | To manually or automatically release all the compressed air from inside the abrasive blast vessel. (Also referred to as "blowdown".) | | Depressurized
System | An abrasive blaster that is pressurized only when the deadman activates the blast operation. The blaster automatically depressurizes when the deadman is released. | | Pressurized | An abrasive blaster that is automatically pressurized when the air inlet ball valve is | | System | opened. The blaster remains pressurized when the deadman is released. | | Blowdown | To manually or automatically release all the compressed air from inside the abrasive blast vessel. (Also referred to as "depressurize".) | | Deadman | A manually operated valve or switch that allows remote starting and stopping of the blast operation. [Also referred to as "deadman valve" (pneumatic blast controls) or "deadman switch" (electric blast controls.)] | | Popup | An air pressure operated valve that seals the abrasive inlet at the top of the pressure vessel. Its operation may be manual or automatic. | | Abrasive | A granular substance used in an air blast operation that is the means for blasting the surface of an object. (Also referred to as abrasive blasting media.) | | Silica | The crystalline chemical compound silicon dioxide (SiO ₂) which can be found in many natural abrasives and other substances. Breathing silica dust can cause respiratory diseases such as silicosis. (Also referred to as crystalline silica) | ### 0.0 Warning Decal Identification and Location Listed below are the warning decals and the corresponding hazards related to this equipment. Refer to Figure 0.1(a) thru 0.1(c) for images of the warning decals. Refer to Figures 0.2(a) and 0.2(b) for the locations of these warning decals on the abrasive blaster. | No. | Qty. | Part No. | Description | Hazard | | |-----|------|-----------------------|--|---|--| | 1. | 2 | 7031-001 | Medium "Schmidt" | Not Applicable | | | 2. | 1 | 7031-002 | Small "Schmidt" | Not Applicable | | | 3. | 1 | 7031-054 | "Warning" Airborne particle and loud noise hazard. | Airborne particles and loud noise from blast nozzle and blowdown can cause injury and loss of hearing. Wear approved eye and ear protection. See Section 1.0 and 3.10. | | | 4. | 1 | 7031-007B | "Danger"
Pressurized vessel. | Propelled objects will cause serious injury or death. Depressurize vessel prior to performing any maintenance. See Section 6.2. | | | 5. | 1 | 7031-057 | "Warning" Read manual before using this machine. | Read and understand operator's manual before using this machine. Failure to follow operating instructions could result in injury or damage to equipment. See Section 1.0. | | | 6. | 1 | 7031-077 | "Warning"
Pinch point hazard. | Vessel pressurization will close popup.
Closing popup can pinch and crush. Keep
hands and fingers away from popup. | | | 7. | 1 | 7031-082 | "Danger"
Pressurized vessel
Handway components | Propelled objects will cause serious injury or death. Incorrect or damaged handway or manway cover components can result in failure. See Section 6.4. | | | 8. | 1 | 7034-001
7031-084 | Welded "Warning" plate
or decal.
General hazard and
advisory notes. | Steel "Warning" plate welded to pressure vessel which is a general list of required actions to take before and during the operation of this equipment. See Section 1.0. | | | 9. | 1 | 7031-017 | "Inlet" | Not Applicable | | | 10. | 2 | 7031-087 | "USPAT" | Not Applicable | | | 11. | 2 | 7031-088 | Large "AmphiBlast" | Not Applicable | | | 12. | 1 | 7031-089 | Small "AmphiBlast" | Not Applicable | | | 13. | 1 | 7031-090 | "Notice"
Threaded coupling. | Replacing the full port threaded coupling on
the Thompson Valve with another type will
result in equipment malfunction. Use the
correct part or the adapter hose provided
with
the equipment. | | | 14. | 1 | 7031-092
7031-092E | "Amphiblast Setup
Checklist" | Not Applicable | | 1) 7031-001 (7-1/2" x 7-1/2") 2) 7031-002 (4-1/2" x 4-1/2") 3) 7031-054 Figure 0.1(a) – Warning Decal Summary 4) 7031-007B 5) 7031-057 6) 7031-077 7) 7031-082 - 1. TO PREVENT INJURY OR DEATH, READ WARNINGS AND SAFE PROCEDURES IN OWNER'S MANUAL - 2. DEPRESSURIZE UNIT BEFORE ANY MAINTENANCE OR LOADING - 3. TO PREVENT DELAYED LUNG INJURY, DO NOT USE ABRASIVES CONTAINING FREE SILICA. - FURNISH ALL PERSONNEL IN THE AREA WITH N.I.O.S.H. APPROVED RESPIRATORY EQUIPMENT AND EAR PLUGS. - FAILURE TO PROPERLY USE BLASTING EQUIPMENT COULD RESULT IN SILICOSIS AND DEATH, 8) 7034-001 (welded) # **A** WARNING #### PRESSURIZED VESSEL Propelled objects, airborne particles, noise & pinch hazards present. Obey below rules and all other warnings. - To minimize the chance of injury and risk of death, all operators must read, understand, and follow all rules and procedures detailed in the Operation and Maintenance Manual provided before operating this equipment. - Depressurize this equipment before performing maintenance or loading with abrasive. Refer to manual Section 6.2. - To minimize the chance of lung injury and silicosis Do Not use abrasives containing free silica. Refer to manual Section 3.8. - Furnish all personnel in the area of blast operation with NIOSH approved respiratory equipment, ear plugs, and all required PPE. Refer to manual Section 3.10. - Failure to properly use blasting equipment and failure to follow the Rules for Safer Operation could result in serious injury, silicosis, or death. Refer to manual Section 1.0. ciomMfg.com AXXIOM MFG Part No. 7031-094 8) 7031-084 (decal) (Units manufactured after September 2017) ### Figure 0.1(b) – Warning Decal Summary (continued) #### USPAT WWW.SCHMIDTPATENTS.COM 9) 7031-017 10) 7031-087 11) 7031-088 (4-7/16" x 16") 12) 7031-089 (3" x 11") 13) 7031-090 14) 7031-092 (Pneumatic Controls) 7031-092E (Electric Controls) Figure 0.1(c) – Warning Decal Summary (continued) Figure 0.2(a) - AmphiBlast™ 4.5 (1-Outlet) Warning Decal Placement Figure 0.2(b) – AmphiBlast™ 6.5 (2-Outlet) Warning Decal Placement # **Table of Contents** | Section | | Page | |---------|---|------| | 0.0 | Warning Decal Identification and Location | 4 | | 1.0 | Rules for Safer Operation | 10 | | 2.0 | Specifications and General Information | 17 | | 3.0 | Installation Requirements and Personal Protective Equipment | 23 | | 4.0 | Abrasive Blast System General Operation | 29 | | 5.0 | AmphiBlast™ System General Operation | 30 | | 6.0 | Pre-operation Procedures | 39 | | 7.0 | Operating Instructions | 46 | | 8.0 | Maintenance and Inspection Instructions | 55 | | 9.0 | Drawings and Parts Lists | 61 | | 10.0 | Recommended Spare Parts Lists | 94 | | 11.0 | Troubleshooting | 96 | | 12.0 | Warranty and Reference Information | 101 | | 13.0 | Blasting Data Tables | 106 | | 14.0 | Water Pump Manual | 107 | #### 1.0 Rules for Safer Operation #### 1.1. GENERAL RULE FOR SAFER OPERATION. SCHMIDT® ABRASIVE BLASTERS HAVE BEEN DESIGNED TO BE SAFE WHEN USED IN THE PROPER MANNER. ALL ABRASIVE BLASTERS ARE POTENTIALLY DANGEROUS IF ALL SAFETY PRECAUTIONS ARE NOT RIGOROUSLY FOLLOWED. PROPER TRAINING IS REQUIRED BEFORE OPERATION. PROPER PROCEDURES MUST BE FOLLOWED. THE ABRASIVE BLASTER AND ALL COMPONENTS MUST BE PROPERLY MAINTAINED. FAILURE TO OPERATE, SERVICE AND MAINTAIN THE ABRASIVE BLASTER AS SET FORTH IN THIS MANUAL MAY CAUSE INJURY OR EVEN DEATH TO ANY PERSON USING, SERVICING OR IN THE VICINITY OF THE ABRASIVE BLASTER. THIS MANUAL IDENTIFIES POTENTIAL HAZARDS BY DANGER, WARNING, AND CAUTION SYMBOLS. HOWEVER, ALL THE RULES, PROCEDURES AND RECOMMENDATIONS MUST BE FOLLOWED. FAILURE TO OPERATE PROPERLY IS VERY LIKELY TO PLACE PERSONS AND PROPERTY AT HIGH RISK OF DAMAGE, INJURY OR EVEN DEATH. # **▲** DANGER ABRASIVE BLASTERS AND THE ABRASIVE BLAST OPERATION ARE POTENTIALLY DANGEROUS IF ALL SAFETY PRECAUTIONS ARE NOT FOLLOWED. FAILURE TO OPERATE THE ABRASIVE BLASTER WITHOUT FOLLOWING ALL THE RULES FOR SAFER OPERATION MAY RESULT IN SERIOUS INJURY OR DEATH TO OPERATING PERSONNEL OR PERSONS IN THE OPERATING VICINITY. #### 1.2. KNOW YOUR EQUIPMENT. Do Not operate this equipment in a manner other than its intended application (see Section 4.0). Do Not operate this equipment or any other Schmidt® equipment without following the *Rules for Safer Operation* and all the operating procedures and instructions. Learn the applications and limitations as well as the specific potential hazards related to this machine. Failure to do so could result in serious injury or death. #### 1.3. RECEIVE PROPER TRAINING. Do Not operate this equipment unless you have received operational and maintenance training. Begin by thoroughly reading and understanding this operation and maintenance manual and all included information. Consult an authorized Schmidt distributor or Axxiom manufacturing, Inc. #### 1.4. PROTECT YOUR FEET. Do Not operate this equipment without wearing OSHA approved foot protection. Observe all applicable local, state, and federal regulations. See Section 3.10 and OSHA 29 CFR 1910.136. Heavy objects can shift while being blasted and may fall on operators. All operators and personnel in the vicinity must wear OSHA approved foot protection during the operation of this equipment. See Section 3.10 and OSHA 29 CFR 1910.136. #### 1.5. PROTECT YOUR EYES. Do Not operate this equipment without wearing OSHA approved safety glasses. Observe all applicable local, state, and federal safety regulations. See Section 3.10 and OSHA 29 CFR 1910.133. # **▲** WARNING When filling the blast vessel and during the blast operation, abrasive can be blown in the face and eyes of operators. All operators and personnel in the vicinity must wear OSHA approved safety glasses during the operation of this equipment. See Section 3.10 and OSHA 29 CFR 1910.133. #### 1.6. PROTECT YOUR LUNGS. Do Not operate this equipment without wearing OSHA approved respiratory protection. Abrasive blasting produces dust contaminated with toxic substances from the abrasive used, the coating being removed, and the object being blasted. This dust may contain silica which can cause severe and permanent lung damage, cancer, and other serious diseases. Do Not breathe the dust. Do Not rely on your sight or smell to determine if dust is in the air. Silica and other toxic substances may be in the air without a visible dust cloud. If air-monitoring equipment for silica is not provided at the worksite, then all personnel MUST wear appropriate respiratory protection when using or servicing this equipment. Breathing air supplied to respirators must be of acceptable quality. Consult your employer and OSHA regarding the appropriate respiratory protection and breathing air quality. See Sections 3.9, 3.10, and OSHA 29 CFR 1910.134. # **▲** DANGER Abrasive blasting produces dust which may contain silica and other toxic substances that can cause severe and permanent lung damage, cancer, and other serious diseases if inhaled. All operators and personnel in the vicinity must wear OSHA approved respiratory protection during the operation of this equipment See Sections 3.9, 3.10, and OSHA 29 CFR 1910.134. #### 1.7. BREATHING AIR QUALITY. Do Not use breathing air that does not meet OSHA Class D standards. Use extreme caution when selecting a source of breathing air. Breathing air provided by an oil-lubricated air compressor can contain carbon monoxide; therefore, a carbon monoxide detector is required (See Section 3.10). Carbon monoxide can be in the compressed air produced by an oil-lubricated air compressor when it is operated at extremely high temperature; therefore, a high temperature alarm is required to alert the operators when this condition exists. See Section 3.9 and reference OSHA 29 CFR 1910.134(i). Extreme caution must be taken when connecting to factory air sources. Factories can have sources of compressed gases such as nitrogen which is fatal if used as a breathing air source. Verify that the air source is breathable air. # **▲** DANGER Breathing air must meet OSHA Class D standards. Use of breathing air sources that do not meet Class D standards can cause asphyxiation and result in death. Verify that all air sources are breathable quality and use a high-temperature alarm and a carbon monoxide monitor when required. See Sections 3.9, 3.10 and OSHA 29 CFR 1910.134(i). Enclosed blast areas must be ventilated to reduce airborne dust to an acceptable level as required by OSHA 29 CFR 1910.1000 and 1910.94. #### 1.8. PROTECT YOUR HEARING. Do Not operate this equipment without wearing OSHA approved hearing protection. Observe all applicable local, state, and federal safety regulations. See Section 3.10 and refer to OSHA 29 CFR 1910.95 and 1926.101. Loud noise is generated by the blast nozzle and the blowdown operation of this equipment. All operators and personnel in the vicinity must wear OSHA approved hearing protection during the operation of this equipment. See Section 3.10 and refer to OSHA 29 CFR 1910.95 and 1926.101. #### 1.9. PROTECT YOUR PERSON Abrasive blasting produces dust contaminated with toxic substances from the abrasive used, the coating being removed, and the object being blasted. All blast operators and other personnel involved in the blast operation or in the vicinity of the blast operation should wear protective clothing. The protective clothing should be disposable or washable work clothes that should be removed at the worksite so that contaminated dust is not transferred into automobiles or homes. See Section 3.10 and refer to OSHA 29 CFR 1910.94 and 1910.132. #### 1.10. ADHERE TO ALL REGULATIONS. Do Not operate this equipment without observing all local, state, and federal safety regulations including, but not limited to, OSHA (Occupational Health and Safety Administration). #### 1.11. STAY ALERT. Do Not operate this
equipment when you are tired or fatigued. Use caution and common sense while operating and/or performing maintenance on this equipment. #### 1.12. DO NOT USE DRUGS, ALCOHOL, or MEDICATION. Do Not operate this equipment while under the influence of drugs, alcohol, or any medication. #### 1.13. PROTECT BYSTANDERS. Do Not allow blast equipment operators and other personnel to enter the vicinity of the blast operation without providing respiratory protective equipment that meets OSHA regulations. If dust concentration levels exceed the limitations set in OSHA 29 CFR 1910.1000 then respirators are required. #### 1.14. KEEP CHILDREN AND VISITORS AWAY. Do Not allow children or other non-operating personnel to contact this equipment or the connecting hoses and cords. Keep children and non-operating personnel away from work area. #### 1.15. AVOID DANGEROUS ENVIRONMENTS. Do Not operate this equipment without familiarizing yourself with the surrounding environment. The blast operation creates high level of noise which may prevent the operator from hearing other possible dangers (i.e. traffic or moving equipment). In such situations a stand-by watch person may be necessary to protect against injury to personnel. #### 1.16. AVOID DANGEROUS ENVIRONMENTS. Do Not use this equipment in areas cluttered with debris. Debris in the work area can create tripping hazards which can cause the operator to lose control of the blast hose and result in injury to operating personnel. Keep work area clean and well lit. When working at an elevated location, pay attention to articles and persons below. #### 1.17. AVOID DANGEROUS ENVIRONMENTS. Do Not operate this equipment in elevated areas without using fall protection equipment. Certain applications of this equipment may require the use of scaffolding. Use of scaffolding creates hazardous situations such as tripping and fall hazards which can result in serious injury or death to operating personnel. Consult OSHA 29 CFR 1910 Subpart D. #### 1.18. AVOID DANGEROUS ENVIRONMENTS. Do Not blast objects that are not properly secured. The blast operation can cause the blasted object to shift or move. Extremely large objects to be blasted can create a crush hazard to operating personnel which can result in serious injury or death. Properly secure the object to be blasted. #### 1.19. AVOID DANGEROUS ENVIRONMENTS. Do Not blast objects used to store flammable materials. The blast operation can cause sparks which can ignite fumes or residual flammable materials inside enclosed containers which can explode resulting in serious injury or death to operating personnel. #### 1.20. AVOID DANGEROUS ENVIRONMENTS It has been determined that blast abrasives approved for use in blast equipment are not ignitable nor do they present a dust explosion hazard in environments approved for use. However, airborne substances that make up the items and substrates being blasted can be ignitable when mixed with airborne dust from the blast abrasive. To mitigate risk of dust explosion avoid blasting in confined spaces without proper ventilation. Consult plant authorities, OSHA 29 CFR 1910.146 and 1910.94. ### **A** DANGER Explosion Hazard. Do Not operate blast equipment in confined spaces without proper ventilation. Consult plant authorities, OSHA 29 CFR 1910.146 and 1910.94. #### 1.21. ELECTRICALLY GROUND EQUIPMENT. Static electricity is generated by the abrasive flow through the blast hose and/or vacuum hose. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose and/or vacuum hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. See Section 5.12. #### 1.22. MAINTAIN VESSEL INTEGRITY. Do Not operate this equipment with the pressure vessel damaged, or with any part of it worn or damaged. Do Not operate this equipment in a condition that may cause failure of the pressure vessel. See Sections 1.23 through 1.33 below. ### **▲** DANGER An abrasive blaster is a Pressurized Vessel. Alterations, damage, or misuse of the pressure vessel can result in rupturing. Damaged or incorrect components used on the abrasive blaster can result in rupturing. The compressed air inside a pressurized vessel contains a dangerously high level of energy which can propel objects and cause serious injury or death. #### 1.23. NEVER OPERATE OVER MAXIMUM WORKING PRESSURE. Do Not operate this equipment above maximum allowable working pressure (MAWP) at maximum operating temperature (°F) shown on the ASME nameplate attached to the vessel. See Sections 2.2 and 8.1. #### 1.24. INSTALL PRESSURE RELIEF DEVICE. Do Not operate this equipment without a pressure relief device in place. The ASME Code requires that all vessels be equipped with pressure relief devices prior to installation. The pressure relief device must be set at the maximum allowable working pressure of the abrasive blaster. See the ASME nameplate attached to the vessel. See Section 3.11 for information regarding the pressure relief valve. #### 1.25. NEVER OPERATE BEYOND ALLOWABLE TEMPERATURE RANGE. Do Not operate this equipment above the maximum allowable temperature at the allowable pressure or below the minimum design metal temperature (MDMT) shown on the pressure vessel nameplate. The characteristics of the pressure vessel metal are weakened when the temperature is outside the operating range. Operating the pressure vessel outside of allowable temperature range can result in rupturing and cause serious injury or death. See Section 2.2. #### 1.26. ASME NAMEPLATE REQUIRED. Do Not operate this equipment if the ASME pressure vessel nameplate is missing. Contact Axxiom Manufacturing, Inc. for technical support. #### 1.27. DO NOT MODIFY VESSEL. Do Not modify or alter any abrasive blaster, blast equipment, or controls thereof without written consent from Axxiom Manufacturing, Inc. Do Not weld, grind, or sand the pressure vessel. *It will not be safe to operate*. Non-authorized modifications could lead to serious injury or death. Non-authorized modifications will void the warranty and may void the ASME/NB integrity. #### 1.28. DO NOT HAMMER ON VESSEL. Do Not hammer on or strike any part of the pressure vessel. Hammering on the pressure vessel can create cracks and cause rupturing. #### 1.29. FIRE DAMAGE NOTICE. Do Not operate if the pressure vessel has been damaged by fire. If damaged, take out of service immediately and have it inspected and/or repaired by a qualified facility. Contact Axxiom Manufacturing, Inc. for technical support. #### 1.30. INSPECT VESSEL REGULARLY. Do Not operate this equipment with damage to the pressure vessel. *It is not safe*. Inspect outside and inside of the pressure vessel regularly for corrosion or damage (i.e. dents, gouges or bulges). If damaged, take out of service immediately and have it inspected and/or repaired by a qualified facility. Contact Axxiom Manufacturing, Inc. for technical support. See Section 8.0. #### 1.31. CHECK FOR LEAKS IN VESSEL. Do Not operate this equipment if there is a leak in the pressure vessel. If leaking, take out of service immediately and have it inspected and/or repaired by a qualified facility. Contact Axxiom Manufacturing, Inc. for technical support. #### 1.32. INSPECT HANDWAY ASSEMBLY. Do Not operate the abrasive blaster without first inspecting the handway assembly. To ensure proper operation all handway components must be the correct size for the vessel handway opening. See Section 6.4. #### 1.33. NEVER MODIFY BLOWDOWN. Do Not connect the blowdown on this equipment onto a common header with any other unit of any description, or any other source of compressed air, without first making sure a check valve is used between the header and this unit. Do Not install this equipment sharing piping with another unit of higher discharge pressure and capacity. A safety hazard could occur in the form of a back-flow condition. Do Not install a muffler or silencer on the blowdown that is not designed for use on abrasive blast equipment it can cause a malfunction and can result in a hazardous condition. See Section 5.3 and Section 6.2. #### 1.34. DEPRESSURIZE VESSEL BEFORE PERFORMING MAINTENANCE. Do Not remove, repair, or replace any item on this equipment while it is pressurized. Do Not attempt to perform maintenance or load abrasive while this equipment is pressurized or is even capable of being pressurized. This means the inlet ball valve should be closed and the air supply should be shut off or disconnected. Anytime the manual blowdown valve is closed it should be assumed that the abrasive blast vessel is pressurized. # **▲** DANGER An abrasive blaster is a Pressurized Vessel. The compressed air inside a pressurized vessel contains a dangerously high level of energy which can propel objects and cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. #### 1.35. ALWAYS USE REMOTE CONTROLS. Do Not sell, rent, or operate abrasive blasters without remote controls. OSHA regulations require remote controls on all abrasive blasters. All abrasive blasters must be equipped with automatic (deadman) type remote controls (either pneumatic or electric). Failure to use remote controls can cause serious injury or death to the operator(s) or other personnel in the blasting area. Reference OSHA 29 CFR 1910.244(b). #### 1.36. NEVER USE BLEEDER TYPE DEADMAN VALVES. Do Not use bleeder type deadman valves on any Schmidt® abrasive blaster. The use of A-BEC, Clemco, or a similar bleeder type deadman valve can, without warning, cause unintentional start-up which can result in serious personal injury. A particle of dirt from the air hose can plug the bleed hole in the deadman valve and cause the blast outlet to turn on. #### 1.37. CHECK FOR DAMAGED PARTS. Do Not use this equipment with damaged components. Periodically check all valves, hoses, fittings, pipe, and pipe fittings
(internal and external) to confirm that they are in good condition. Repair or replace any component that shows any sign of wear, leakage, or any other damage. See Section 8.0. # **▲** DANGER Damaged components can fail during operation and result in serious injury or death to operating personnel. #### 1.38. ALWAYS USE SAFETY PINS ON HOSE COUPLING CONNECTIONS. Do Not use this equipment without hose coupling safety pins in place and hose whip checks installed on all air and blast hoses. All blast hose couplings and air hose couplings have pin holes that must be safety pinned to protect against accidental disconnections. Accidental hose disconnection can cause serious injury or death. See Sections 5.15 and 8.7. #### 1.39. ALWAYS USE CORRECT REPLACEMENT PARTS AND ACCESSORIES. Do Not use replacement parts or accessories that are not rated for pressures equal to or higher than the abrasive blaster's operating pressure. Improper hoses and/or fittings used on or connected to the abrasive blaster can rupture and cause serious injury or death. Do Not use replacement parts that are not Schmidt® original factory replacement parts. Non-original parts may not fit properly and can cause equipment damage and/or failure which can result in serious injury to operating personnel. Consult Axxiom Manufacturing, Inc. See Section 9.0 and Section 12.2.12. Use of replacement components that are not Schmidt® original factory replacement parts may result in equipment failure which can result in serious injury to operating personnel. #### 1.40. ALWAYS USE CORRECT PRESSURE RATED ACCESSORIES. Do Not use air reservoirs or moisture separator tanks that are not rated for use in compressed air applications. Air reservoirs and moisture separator tanks larger than 6 inches inside diameter must have an ASME code stamp. ### **▲** DANGER An air reservoir or moisture separator tank is a Pressurized Vessel. The compressed air inside a pressurized vessel contains a dangerously high level of energy which can explode propelling objects and result in serious injury or death to operating personnel. Air reservoirs and moisture separator tanks must be ASME coded tanks. #### 1.41. NEVER AIM BLAST NOZZLE TOWARDS ANY PERSON. Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. #### 1.42. NEVER USE ABRASIVE NOT INTENDED FOR BLAST EQUIPMENT. Do Not use abrasive blast media containing free silica. Silica can cause silicosis or other related respiratory damage. Verify that the abrasive is intended for use in blasting equipment. Personal protective equipment, including airline filters and respirators, must be used for all abrasive blasting operations. Observe all applicable local, state, and federal safety regulations. See Sections 3.8, 3.10, and reference OSHA 29 CFR 1910.134. #### 1.43. CHECK ABRASIVE FOR DEBRIS. Do Not use blast abrasive that contains trash or other debris. Trash or debris can create a blockage and cause equipment malfunction. Screen recycled abrasive to remove trash. #### 1.44. STOP OPERATION IMMEDIATELY IF ANY ABNORMALITY IS DETECTED. Do Not operate this equipment if anything abnormal is seen during operation. Stop operation immediately for inspection. Refer to Section 8.0 for maintenance and inspection details. #### 1.45. DO NOT OVERLOAD THE LIFT EYES. Do Not load the lifting eyes above the rated capacity. Do Not lift this equipment by any point other than the lifting eyes or designated lift points. Do Not lift this equipment while it is pressurized. See Section 2.6. #### 1.46. MAINTAIN WARNING DECALS. Do Not remove, cover, obstruct, or paint over any warnings, cautions, or instructional material attached. Warning decals must be installed, maintained, and located to be visible and with enough light for legibility. See Sections 0.0 and 8.13. #### 1.47. SAVE THIS OPERATION AND MAINTENANCE MANUAL. Refer to this operation and maintenance manual as needed as well as any additional information included from other manufacturers. Never permit anyone to operate this equipment without having him/her first read this manual and receive proper training. Make this manual readily available to all operating and maintenance personnel. If the manual becomes lost or illegible replace it immediately. This operation and maintenance manual should be read periodically to maintain the highest skill level; it may prevent a serious accident. This operation and maintenance manual is available for downloading from AxxiomMfg.com. #### 1.48. SAFETY REFERENCES See Section 12.4 for safety information sources and contact information. Use these sources to obtain additional information regarding all aspects of blast operation safety. #### 2.0 Specifications and General Information #### 2.1 Notes to Distributors and Owners - 2.1.1. Verify that the deadman, twinline (or cords), and the operation and maintenance manual are included with the abrasive blaster when it is received. Verify that the deadman, twinline (or cords), and the operation and maintenance manual are included with the abrasive blaster when it is delivered to the purchaser. - 2.1.2. This equipment is intended for knowledgeable and experienced users. No person or persons should be allowed to operate this equipment without first receiving proper training in abrasive blasting operation and use of this equipment. - 2.1.3. Immediately notify Axxiom Manufacturing, Inc. of any instances of use of this equipment in any manner other than the intended application. See Section 4.0. - 2.1.4. Only qualified personnel should load and unload this equipment for shipping. Slings or other lifting devices must only be attached to the designated lifting points. See the lifting diagrams shown in Section 2.6. - 2.1.5. For further information on options and accessories available for Schmidt® abrasive blasters visit the Axxiom website or contact us: Axxiom Manufacturing, Inc. 11927 South Highway 6 Fresno, Texas 77545 Phone: 1-800-231-2085 Fax: 1-281-431-1717 Website: <u>www.AxxiomMfg.com</u> ### 2.2 Abrasive Blaster Operational Specifications Maximum Working Pressure 150 psig @ 250°F (see ASME nameplate). Maximum External Pressure Not designed for external pressure Minimum Metal Temperature -20°F @ 150 psig (see ASME nameplate) Air Consumption See Section 13.0 table 1 Abrasive Consumption See Section 13.0 table 2 Blast Hose Size See Section 13.0 table 3 Electrical requirements Abrasive Capacity See Section 3.7 Model 4.5: 3.5 cu.ft. Model 6.5: 5.6 cu.ft. Model 6.5: 5.6 cu.ft. **ASME** Nameplate ASME/CE Nameplate ### 2.3 Important Reference Numbers Fill in the Abrasive Blaster model number, serial number, and other information in the blank spaces below. This information will be needed for reference when service, maintenance, or technical support is required. See pressure vessel nameplate for the below indicate identification numbers. See Section 2.2. | Blaste | r Model N | Number | | | |-----------------------|-----------------------------------|---|---|---| | Blaster Serial Number | | umber | National Board Number | | | Blaste | r Type: | Thompson® Valve | Tera Valve | Blaster Piping Size | | Vesse | el Inform | nation | | | | 2.4.1. | | | | asive Blasters are manufactured in stric
Code Section VIII, Div. 1. | | 2.4.2. | of this v
by a rep
dependin | ressel, it is required that
utable shop holding a lang on state or city la | t any and all v
National Board
w. Welding o | nd quality control used in the manufacture velded repairs to this vessel be performed "R" Stamp and/or an ASME "U" stamp on the vessel performed by welders no bid the ASME/NB integrity of the vessel. | | Notes | S _ | | | | | | | | | | | | | | | | | - | #### 2.6 AmphiBlastTM Lifting Diagram and Dimensional Specifications # **▲** DANGER An abrasive blaster is a Pressurized Vessel. The compressed air inside a pressurized vessel contains a dangerously high level of energy which can propel objects and cause serious injury or death. Depressurize vessel before lifting, moving, or transporting. See Section 6.2 # AMPHIBLAST 4.5 (1-OUTLET) LIFT LUGS FOR FULL LOAD LIFTING TARE WEIGHT: 950 LBS. WORK LOAD CAPACITY 1,710 LBS. MAXIMUM GROSS WEIGHT: 2,660 LBS. MINIMUM SLING LENGTH: 4 FT. 4 SLINGS MINIMUM TO SINGLE LIFT POINT EMPTY WEIGHT = 950 LBS. *CRITICAL: THIS DRAWING IS FOR REFERENCE ONLY. ALL LIFTING MUST BE PERFORMED BY QUALIFIED PERSONNEL IN CONJUNCTION WITH ALL APPLICABLE SAFETY CODES. 291516 CENTER OF GRAVITY (maria) 5914 CENTER OF GRAVITY 28" 0 3134 1834 Figure 2.6(a) – AmphiBlast™ 4.5 (1-Outlet) Lifting Diagram and Dimensional Data 5912 ### **AMPHIBLAST 6.5 (2-OUTLET)** LIFT LUGS FOR FULL LOAD LIFTING TARE WEIGHT: 1,530 LBS. WORK LOAD CAPACITY 3,320 LBS. MAXIMUM GROSS WEIGHT:4,850 LBS. MINIMUM SLING LENGTH: 6 FT. 4 SLINGS MINIMUM TO SINGLE LIFT POINT EMPTY WEIGHT = 1,530 LBS. *CRITICAL: THIS DRAWING IS FOR REFERENCE ONLY. ALL LIFTING MUST BE PERFORMED BY QUALIFIED PERSONNEL IN CONJUNCTION WITH ALL APPLICABLE SAFETY CODES. Figure 2.6(b) – AmphiBlast™ 6.5 (2-Outlet) Lifting Diagram and Dimensional Data ### 2.7 AmphiBlastTM Strapping / Packing Detail STRAP AMPHIBLAST TO PALLET AS SHOWN REFER TO SECTION 2.0 FIGURE 2.6(a) FOR AMPHIBLAST EMPTY WEIGHT Figure 2.7(a) – AmphiBlast™ 4.5 (1-Outlet) Shipping Detail STRAP AMPHIBLAST TO PALLET AS SHOWN REFER TO SECTION 2.0 FIGURE 2.6(b) FOR AMPHIBLAST EMPTY WEIGHT Figure 2.7(b) – AmphiBlast™ 6.5 (2-Outlet) Shipping Detail ### 3.0 Installation Requirements and Personnel Protective Equipment
Carefully read and follow all the recommendations regarding the abrasive blast system installation requirements. Improper installation can result in equipment malfunction and significant lost time expenses. Consult an authorized Schmidt® distributor or Axxiom Manufacturing, Inc. #### 3.1 Abrasive Blast System Installation Location - i. Portable units: Units equipped with handles and wheels are portable and can be rolled to locations where blast jobs are performed. Locate the unit to allow accessibility to the handway and for ease of abrasive filling. Pay close attention to objects that may be in the path of the pressure vessel exhaust air (depressurization). See Section 6.2 for system depressurization. - ii. Stationary units: Units that will be installed in permanent locations require careful consideration. Stationary units can be installed below an abrasive hopper with a support structure that can limit access to the abrasive blast system. Install stationary blast systems in a position that will allow access to the handway and the blaster piping. These areas must be accessible to perform required maintenance. Pay close attention to objects that may be in the path of the pressure vessel exhaust air (depressurization). See Section 6.2 for system depressurization. An exhaust hose assembly can be installed on an AmphiBlastTM to direct the exhaust air into the blast room. **Note:** A longer blowdown exhaust hose can lengthen the blowdown time and creates the possibility of blockage. **Note:** An abrasive spider is recommended for blasters installed below an abrasive hopper (see Section 9.11). #### 3.2 Compressed Air Requirements (blast nozzle) The blast nozzle size and blast pressure determine the compressed air requirements. Available air flow capacity and/or air compressor size must be considered before selecting the blast nozzle size. An air source dedicated to the abrasive blast system is preferred to reduce system pressure drops and back flow of air. If an existing air compressor will be used or a limited air supply is available, then the blast nozzle must be selected based on these conditions. Be aware that as the blast nozzle wears the air demand will increase. See Table 1 in Section 13.0 for air consumption by nozzle size at various pressures. **Note:** AmphiBlast units can be upgraded to two blast outlets and therefore, this option should be considered when determining compressed air requirements. ### 3.3 Air Compressor Size Air compressor size is crucial to the operation of the abrasive blast system. Blast nozzle selection and desired productivity must be evaluated to determine the air flow requirements prior to selecting the air compressor size. Sufficient air supply capacity is necessary to maintain the system air pressure. Insufficient air flow capacity will result in reduced blast nozzle pressure and lost productivity. The air compressor must be large enough to supply: - i. The sum of blast air requirements for each nozzle at the highest pressure that will be used (see Section 13.0, Table 1). - ii. The 12 CFM breathing air supplied to each blast operator respirator. **Note**: Reference OSHA regulations regarding requirements for breathing air, especially when an oillubricated air compressor is used. #### 3.4 Blast System Air Supply Line The air supply hose and fittings must be rated at a minimum of 150 psi operating pressure. The air supply hose from the air compressor to the blast unit should be at least the same diameter as the air inlet piping (see Section 9.0). This size hose will be large enough to supply the required airflow to operate the blast unit controls and each blast nozzle. See Section 5.14 for further information on air hose connection. **Note:** If the abrasive blast system will be installed in a permanent location, the inlet connection can be hard piped. Do Not install hard piping that is smaller than the piping size of the blast system. Smaller piping size will reduce the air flow capacity. If other equipment will be using the same source of air as the abrasive blaster, install a check valve at the air inlet. This will protect against back flow of air pressure that can carry abrasive into the blast controls. Hard piping connected to the abrasive blaster must be structurally supported so not to apply any loading on the pressure vessel at the points of connection. Unsupported piping can create bending loads at the pressure vessel connections which can cause damage and possible failure. Hard piping connections to the pressure vessel must be designed and installed by qualified personnel experienced with piping systems and the applicable codes pertaining to them. # **▲** CAUTION External loading at piping connection can cause damage and possible failure of the pressure vessel. Hard piping connected to the pressure vessel must include supports to eliminate the possibility of applying a load on the pressure vessel. #### 3.5 Blast System Air Pressure The maximum allowable working pressure (MAWP) for the blast unit is stamped on the ASME nameplate attached to the vessel. For most abrasive blast systems, the MAWP is 150 psig. Do Not exceed the MAWP. CRITICAL: Any inlet air valve or air pressure regulator added to the system must have sufficient air flow capacity for proper operation of the blast system. Insufficient air flow capacity will cause pressure drop in the blast system resulting in equipment malfunction, abrasive backflow, and reduced blast productivity. Select a valve that will operate with little or no pressure drop (5 psi max.) at the required cfm air flow. #### 3.6 Blast System Air Quality Air quality is crucial to the operation of an abrasive blaster. Moisture and contaminants can cause components to malfunction. Moisture condensation in a blast system causes abrasive flow problems. Condensation occurs when the hot vapor-filled compressed air cools as it reaches the abrasive blaster. Water droplets formed during condensation can be absorbed by the abrasive in the blast vessel which can cause erratic flow to the abrasive valve. To minimize the chance of abrasive flow problems a moisture removal device installed for the blast system air supply is highly recommended (i.e. coalescing moisture separator, air-cooled aftercooler, or deliquescent dryer). Contact a local authorized Schmidt® distributor or Axxiom Manufacturing, Inc. to locate one near you. ### 3.7 Electrical Requirements On units equipped with electric blast controls the supply voltage is 12Vdc or 24Vac. The maximum power required is: 1-outlet with abrasive cutoff: 14 watts 2-outlet with abrasive cutoff: 28 watts **Note:** Insufficient electric power output will result in malfunctioning of the electric blast control system. A power transformer or power supply can be used if the above voltages are not readily available. #### 3.8 Abrasive Selection Abrasive selection is likely the most difficult decision related to the blast operation. Choice of abrasive is based on factors such as blast application type, desired finish and coating requirements, characteristics of object to be blasted, cost and ability to recycle, available equipment, safety, and environmental constraints. There are many abrasives available that are either natural, manufactured, or processing by-products. Abrasives are available in varying sizes, shapes, and hardness. These characteristics determine the resulting effect on the surface to be blasted and limitations of its use. The effects on the blasted surface are measured by its degree of cleanliness and the surface profile. Standards and required levels of these measurements are established by organizations such as Steel Structures Painting Council (SSPC), National Association of Corrosion Engineers (NACE) and coating manufacturers. See Section 12.5 for contact information of these organizations. Use these sources to obtain information regarding all aspects of surface preparation and abrasive selection guidelines. Schmidt® abrasive blasters are designed for high production open abrasive blasting with a wide range of abrasives. It is the responsibility of the employer and operators to select the proper abrasive. It is the responsibility of the employer to make certain that the abrasive selected is safe to use for abrasive blasting. **Critical:** Always obtain the Material Safety Data Sheet (MSDS) for the abrasive to be used. The MSDS provides the chemical makeup of the abrasive. Do Not use abrasives containing toxic materials. Refer to OSHA 29 CFR for acceptable limits of various toxic substances and additional measures to be taken to protect operating personnel. Always use abrasives containing less than 1% of crystalline silica. Always use a NIOSH approved respirator when handling, loading, and cleaning up abrasives. Organic substances which are combustible may only be used in automated blast systems with ventilation that meets OSHA 29 CFR 1910.94. #### 3.9 Breathing Air Quality All blast operators must be supplied with and required to use NIOSH approved air-fed respirators. Breathing air supplied to these respirators must meet Grade D air quality standards as specified by OSHA 29 CFR 1910.134(i) and the Compressed Gas Association Specifications ANSI/CGA G-7.1. Consult these specifications when selecting a source of breathing air. Breathing air must be clean, dry, contaminant-free, and provided at a pressure and volume specified by NIOSH. Use NIOSH approved air filters on all sources of breathing air. See Section 3.10. # **▲** DANGER Breathing air filters do not remove carbon monoxide or any other toxic gases. Use a carbon monoxide monitor to detect unacceptable levels. Consult OSHA 29 CFR 1910.134(i). Many sources of breathing air are available such as air cylinders, free-air pumps, oil-less air compressors, and oil lubricated air compressors. The most used is the same air compressor that is used for the blast air which most often is oil lubricated. Breathing air provided by an oil-lubricated air
compressor can contain carbon monoxide and therefore requires the use of a carbon monoxide detector (See Section 3.10). Carbon monoxide can be in the compressed air produced by an oil-lubricated air compressor when it is operated at extremely high temperature; therefore, a high temperature alarm is required to alert the operators when this condition exists. # **▲** DANGER Oil lubricated air compressors can produce carbon monoxide. Carbon monoxide can cause asphyxiation and result in death. Use a high-temperature alarm and a carbon monoxide monitor when an oil lubricated air compressor is used to supply breathing air. Consult OSHA 29 CFR 1910.134(i). #### **3.10** Personal Protective Equipment (PPE) Abrasive blasting has many hazards that may cause injuries to operators. To minimize risk of injury to operators each must be supplied with and required to use Personal Protective Equipment. The Occupational Health and Safety Administration (OSHA) requires the employer to assess the workplace to determine what PPE is necessary and supplied to each operator (Reference 29 CFR 1910 Subpart I). OSHA requires that this equipment meet or be equivalent to standards developed by the American National Standards Institute (ANSI). Figure 3.10 below identifies the minimum personal protective equipment required for each abrasive blast operator. Also identified are the OSHA references for each and the ANSI standard each PPE item must meet. All PPE clothing and equipment selected must meet the appropriate standard and be of high-quality construction. Select each for proper fit and for comfort which will encourage operator use. Safety Glasses Reference OSHA 29 CFR 1910.133 Must meet ANSI Z87.1 Safety Boots Reference OSHA 29 CFR 1910.136 Must meet ANSI Z41.1 Ear Plugs Reference OSHA 29 CFR 1926.101 Must meet ANSI S3.19 (Also see OSHA 29 CFR 1910.95) Gloves Reference OSHA 29 CFR 1910.138 No Applicable ANSI Standard Respirator Reference OSHA 29 CFR 1910.134 Must be NIOSH approved Protective Clothing Reference OSHA 29 CFR 1910.132 No Applicable ANSI Standard Airline Filter Reference OSHA 29 CFR 1910.134 Must be NIOSH approved Carbon Monoxide Monitor Reference OSHA 29 CFR 1910.134 Figure 3.10 - Personal Protective Equipment #### 3.11 Pressure Relief Valve Installation Do Not operate this equipment without a pressure relief device installed to protect the blaster pressure vessel from over-pressurization. The ASME Code requires that all vessels be operated with pressure relief devices in place. If the compressed air system does not provide for the installation of a pressure relief valve one can be installed on the blowdown port on the pressure vessel. Refer to Figure 3.11 for an alternate location of the air pressure relief valve. Local regulations set the specifications for pressure relief valves; therefore, it is the responsibility of the owner of the abrasive blaster to install a pressure relief valve that meets *all* applicable regulations. The pressure relief device must be set at the maximum allowable working pressure of the abrasive blaster pressure vessel See the ASME/CE vessel nameplates attached to the pressure vessel. ### **A** DANGER Rupture Hazard. Operating the pressure vessel above the maximum allowable working pressure can result in rupturing the pressure vessel. Install an air pressure relief valve to protect against over pressurization of the blast vessel # **AWARNING** Airborne particles and loud noise hazards from relief valve exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of exhaust air path. DO NOT place hands or other body parts in the exhaust air path. Make sure no personnel are in the exhaust air path. Direct the relief valve exhaust away from work area. # **AWARNING** In special cases per request of customer a pressure relief valve may be included with the equipment. It is the responsibility of the owner/user to confirm that the supplied pressure relief valve meets all local regulations. Figure 3.11 – Suggested Location for Air Pressure Relief Valve | 3.12 INSTALLATION CHECKLIST (Photocopy this page to use as a worksheet) | |---| | ☐ Deadman/Twinline (or cords): confirm delivery with the abrasive blaster. | | ☐ <i>Blast accessories:</i> confirm receipt as purchased with the blaster. | | ☐ Inspect blaster: check for possible damage during shipment. See Section 8.0 for | | inspection instructions. | | □ Popup alignment: remove popup dust cover from top head and check popup | | alignment. Shifting of popup is possible during shipment. See Section 8.4 for | | inspection & alignment instructions. | | □ Clean blaster: remove handway cover and check for debris inside. Trapped debris | | can vibrate loose during shipment and later block abrasive flow. If necessary, | | vacuum the bottom of tank. Replace handway cover per instructions in Section 6.4. | | □ Accessible location: install stationary blasters so that handway is accessible for | | maintenance. See Section 3.1 for additional information. | | ☐ <i>CFM available</i> : determine available air supply (cfm) and record here | | See Sections 3.2, 3.3, and 3.5 for information on determining air requirements. | | \square Air supply connection: install air supply piping or connect an air supply hose that is | | the same size as the blaster piping size or larger. See Section 3.4 for details. | | ☐ Air quality: install moisture separator or AirPrep System to remove moisture from | | blast air supply to protect against abrasive flow problems. See Section 3.6. | | ☐ <i>Electric power:</i> provide power source for electric deadman controls. See Section 3.7. | | ☐ <i>Blast abrasive:</i> select abrasive suited for application. See Section 3.8. | | ☐ <i>Breathing air:</i> provide Grade D air source for blast operators. See Section 3.9. | | \square PPE: provide all the necessary personal protective equipment. See Section 3.10. | | \square Pressure relief valve: install relief valve if not provided on air compressor. See | | Section 3.11 for information on pressure relief valve installation. | | ☐ <i>Blast nozzle:</i> select size based on available cfm noted above. See Section 5.13. | | \square <i>Blast hose:</i> select size three times the nozzle size to be used. See Sections 5.12. | | ☐ <i>Install ground:</i> install earth ground. Electrically bond components. See Section 5.14. | | ☐ <i>Injection Module:</i> full port threaded coupling installed on outlet. See Section 5.24. | | ☐ <i>Adjust media spider:</i> adjust height per drawing in Section 9.11 (spider is optional). | | \square <i>Operator training:</i> all operators must completely read and understand the operation | | and maintenance manual and be properly trained in equipment and blast operations. | | ☐ Abrasive blaster setup: follow procedures is Section 6.0. | | Copyright © 2020 Axxiom Manufacturing, Inc. | ### 4.0 Abrasive Blast System General Operation The function of the Schmidt® AmphiBlastTM is to provide a mixture of wet abrasive and compressed air to a blast nozzle. The abrasive blast stream through the blast nozzle is used for removing rust, paint, or other unwanted surface defects. After abrasive blasting, the surface is washed off and blown dry before it is ready for new paint or coating. An abrasive blaster is one of a group of components used in an abrasive blasting job. The typical components are an air compressor, moisture removal device, an abrasive blaster, blast hose, a blast nozzle, operator personal protective equipment, and blast abrasive. See Figure 4.1. The blast abrasive is loaded into the abrasive blaster through the abrasive inlet at the top of the blaster. All the compressed air must be removed from inside the abrasive blaster before it can be filled with abrasive. The abrasive can be bag loaded or loaded from a Schmidt storage hopper. To begin blasting, the abrasive inlet is closed, and the abrasive blaster is filled with compressed air from the air compressor. Since moisture creates problems in the blast operation, it is common for the compressed air to be fed through a moisture removal device, such as a Schmidt AirPrep System. The air pressure in the abrasive blast vessel is equal to the air pressure in the blast hose where it connects at the metering valve. This equal pressure is needed to allow the blast abrasive to flow downward by gravity. The abrasive flow is controlled by the metering valve at the bottom of the blaster. From the metering valve the blast abrasive flows into the blast air stream where it is injected with water. The mixture of wet abrasive and air then flow through the blast hose. The speed of blast air and wet abrasive mixture is greatly increased by the blast nozzle onto the work surface. The high speed of the air and abrasive is what gives it the energy to blast rust and paint from surfaces. Even though wet blasting greatly reduces the amount of dust produced during blasting, there can still be a small amount of dust that is harmful; therefore, all blast operators must use personal protective equipment during the blast operation. All the components required for the blast operation (except for the air compressor) are available from Axxiom Manufacturing, Inc. Call Axxiom to locate a distributor. Figure 4.1 – Typical Abrasive Blast System ### 5.0 AmphiBlast™ General Operation See Figure 5.1 to help understand the general operation of an AmphiBlastTM abrasive blaster. Do not attempt to operate the AmphiBlast before reading all sections of this manual and following all setup procedures. Read Sections 5.1 through 5.25 for a detailed explanation of all components of the AmphiBlast. The AmphiBlast abrasive blaster is a *pressurized system*; meaning the blaster remains pressurized when the deadman lever (#12) is released. The AmphiBlast abrasive blaster (#1) will pressurize when the blowdown ball
valve (#4) is closed and the air inlet ball valve (#3) is opened. The compressed air flows through the moisture separator (#7) to the blast outlet piping and into the abrasive blast vessel (#1). The air flow into the blast vessel internal piping will push the pop-up (#5) against the popup gasket (#6). This will seal the abrasive inlet which allows the air flow to fill and pressurize the abrasive blast vessel (#1). Blasting starts when the deadman lever (#12) is pressed down which will pneumatically or electrically open the blast control valves (#20 & #64). When the control valves open, it sends an air signal that simultaneously opens the automatic air valve (#9), the Thompson® Valve (#14) and the water shut-off valve (#52). Compressed air will pressurize the blast hose (#10) when the automatic air valve (#9) is opened. At the same time, the Thompson Valve (#14) and water shut-off valve (#52) will open allowing abrasive to fall through and water to be injected into the blast air stream. The abrasive flow can be increased or decreased by turning the knob on top of the Thompson Valve (#14). Blasting stops when the deadman lever (#12) is released. This will close the blast control valves (#20 & #64) and vent the air signal to the automatic air valve (#9), Thompson Valve (#14) and water shut-off valve (#52). When the signal air vents, all the valves spring return into their "normally closed" position. The abrasive blaster (#1) remains pressurized when the automatic air valve (#9), Thompson Valve (#14) and water shut-off valve (#52) are closed. The abrasive blaster (#1) is depressurized by closing the air inlet ball valve (#3) and then opening the blowdown ball valve (#4) to completely vent the compressed air. Figure 5.1 – 4.5cf AmphiBlast™ With Pneumatic Blast Controls #### **5.1** Popup Valve (abrasive inlet) The blaster is filled with abrasive through the abrasive inlet at the top of the pressure vessel (#1). The abrasive inlet is automatically sealed by the popup head (#5) when the blaster is pressurized. The air flow into the internal piping pushes the popup head (#5) up against the gasket (#6). See Figure 5.2. # **▲ WARNING** Pinch point hazard. Vessel pressurization will close the popup. Keep fingers clear of the popup opening. Disconnect air supply prior to performing popup maintenance. Figure 5.2 - Standard Popup Assembly & Internal Piping ### 5.2 Air Supply Connection Air is supplied to the abrasive blaster through a hose connection at the air inlet crowfoot (#2). The air supply hose connected to the abrasive blaster must be the same diameter as the air supply piping and rated at a minimum of 150 psi operating pressure. See the drawings and parts lists in Section 9.0 and refer to Sections 3.4 and 5.14. ### **5.3** Air Inlet Ball Valve (pressurize) The air inlet ball valve (#3) is used to turn on and turn off the air flow to the abrasive blaster. When the inlet ball valve is opened, air will flow through the moisture separator (#7) and into the blast vessel internal piping. The air flow will automatically close the popup valve at the abrasive inlet and pressurize the abrasive blaster (see Figure 5.2). The blowdown ball valve (#4) must be closed before opening the air inlet ball valve (#3). **Note:** The abrasive blaster will automatically pressurize when the air inlet ball valve (#3) is opened. The blaster must be manually depressurized thereafter. See Sections 5.5 and 6.2. # **▲** DANGER The AmphiBlastTM is a pressurized vessel. Propelled objects will cause serious injury or death. Read and follow all pre-operation and operating procedures prior to pressurizing the abrasive blaster. See Sections 6.0 and 7.0. #### **5.4** Moisture Separator (optional) The air inlet moisture separator (#7) is an option available on the AmphiBlastTM. Air flow into the blaster passes through the moisture separator (#7) which removes moisture, oil, and dirt particles from the inlet air. The water that is removed by the separator is drained by opening the ball valve (#8) at the bottom of the separator. This ball valve should be left slightly opened anytime the blaster is in operation. This allows water to be drained as it is filtered from the blast air. **Note:** Not all abrasive blasters are equipped with a moisture separator. ### 5.5 Blowdown Ball Valve (depressurize) The blowdown ball valve (#4) is used to release all the compressed air (depressurize) from inside the abrasive blaster. The abrasive blaster must be depressurized before filling with abrasive or before performing any maintenance. The air inlet ball valve (#3) must be closed before depressurizing the abrasive blaster. **Note:** The AmphiBlast abrasive blaster will automatically pressurize when the air inlet ball valve (#3) is opened. The blaster must be manually depressurized thereafter. See Sections 5.3 and 6.2. # **▲ WARNING** Airborne particles and loud noise hazards from blowdown exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of blowdown air path. DO NOT place hands or other body parts in the blowdown air path. Make sure no personnel are in the blowdown air path. #### **5.6** Choke Valve The choke valve (#13) is used to clear any trash that may get into the blast vessel and block the Thompson® Valve orifice. Whenever trash (paint chips, cigarette butts, etc.) blocks the Thompson Valve orifice the procedure is to fully open the Thompson Valve by backing out the knob, then press down the deadman lever (#12) to begin blasting. While blasting, have an assistant close the choke valve (#13) completely for about one second. This creates differential pressure at the Thompson Valve (high pressure above; low pressure below). The higher pressure from the blast vessel should be enough to force the trash through the Thompson Valve orifice. Keep the choke valve (#13) fully open at all other times while blasting to minimize excess Thompson Valve (#14) wear. **Note:** Set the abrasive cutoff valve/switch (#62) to the "on position" for the choke procedure. See Section 5.11. # **▲** WARNING Do not aim blast nozzle towards yourself or any person. System malfunction can cause accidental start up and result in injury to personnel. A secondary purpose of the choke valve is as a manual shut off valve for the blast air supply. When the choke valve (#13) is closed it will shut off the blast air supply to the blast outlet. #### 5.7 Automatic Air Valve (blast air valve) The automatic air valve (#9) is a normally closed valve that opens to supply blast air to the blast hose (#10) and blast nozzle (#11). The automatic air valve (#9) opens when it receives air to its signal port. This happens when the deadman lever (#12) is pressed down which opens the blast control valve (#20) sending an air signal to the automatic air valve. When the deadman lever is released, the air signal from the blast control valve vents and the automatic air valve spring closes to stop blast air flow to the blast hose and nozzle. See Section 9.5. #### 5.8 Thompson® Valve II (abrasive metering valve) The Thompson Valve (#14) is a normally closed valve that opens to supply abrasive into the blast air stream. The Thompson Valve opens when it receives air to its signal port (see Section 9.4). This happens when the deadman lever (#12) is pressed down which opens the blast control valve (#64) sending an air signal to the Thompson Valve. When the deadman lever is released the air signal from the blast control valve vents and Thompson Valve spring closes to stop abrasive flow to the blast hose (#10) and nozzle (#11). The Thompson Valve also controls (meters) abrasive flow by use of an adjustable orifice. The amount this orifice opens is controlled by turning the knob at the top of the Thompson Valve. The knob sets the stopping point of the plunger (See Section 9.4). Turning the knob clockwise reduces the orifice size which decreases abrasive flow. Turning the knob counterclockwise increases the orifice size which will increase the abrasive flow to the blast nozzle. The Thompson Valve II cap has a VPI® decal on the side to use as reference as to the amount the orifice is open. Adjustments to the abrasive flow should be made by turning the knob a little at a time. Test the adjustment by starting the blast for a short period to determine if further adjustment is needed. A diverter plate and gasket must be added to a Thompson Valve (#14) used on an AmphiBlastTM system. The diverter plate must be oriented properly to work correctly. See Section 9.4 for diverter plate location and orientation. The Thompson Valve II has a cleanout port where a ball valve can be installed and used to purge trash that blocks abrasive flow. This is done by opening the clean out valve and pressing down the deadman lever (#12). The blast air flow purges trash through the clean out valve. # **▲** WARNING Airborne particles and loud noise hazards from purge air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of purge air path. DO NOT place hands or other body parts in the purge air path. Make sure no personnel are in purge air path. ### **5.9** Deadman Valve/Switch (blast control) The deadman valve/switch is part of a system that controls the blast operation. The deadman valve/switch (#12) allows the operator to remotely start and stop the blast operation. The deadman is mounted at the end of the blast hose assembly (#10) close to the blast nozzle (#11) to give the operator easy control of the blast operation. The Deadman is either a pneumatic valve or an electric switch depending on the type of abrasive blaster control system. When the deadman lever is pressed down it sends either a pneumatic or electric signal to the blast control valves (#20 & #64). The control valves open and send an air signal to the automatic air valve (#9), the water shut off valve (#52) and the Thompson Valve (#14). See Sections 9.1, 9.2, 9.6, 9.8, and 9.9. #### **5.11**
Abrasive Cutoff There are three uses for the abrasive cutoff feature. The first is to allow blasting air and water without abrasive (wash down). This is useful for washing off abrasive from item that has been wet blasted. See Section 7.7 for instructions on the wash down procedure. The second is to allow blasting air without water and abrasive (blow off). This is useful for blowing off abrasive from an item that has been dry blasted or drying off an item after it has been washed down. See Section 7.8 for instructions on the blow off procedure. The third use is to purge abrasive out of a blast hose. This prevents abrasive from collecting in the blast hose when the blast operation has stopped. The abrasive at rest in the blast hose can cause surges when restarting the blast operation. To purge the hose after blasting, turn the abrasive cutoff valve/switch (#62) to the "OFF" position and continue blasting until abrasive no longer comes out of the blast nozzle (#11). See Figure 5.3. Figure 5.3 - Abrasive Cutoff Controls #### 5.12 Blast Hose The blast air, water, and abrasive mixture flows from the Thompson® Valve (#14) to the blast nozzle (#11) through the blast hose assembly (#10). The typical length of the blast hose is 50ft; however, blast hose extensions can be added to increase length. For higher efficiency keep the blast hose as short as possible. Increased blast hose length causes pressure drops at the blast nozzle which reduces the blast efficiency. For higher efficiency use a blast hose with an inside diameter that is approximately three times the nozzle throat diameter. Keep the blast hose as straight as possible. Sharp bends create high wear points. Static electricity is generated by the abrasive flow through the blast hose. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose and/or vacuum hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. Static electric shock hazard. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. **CRITICAL:** To function properly, a full port threaded coupling (#27) is required on the outlet of the injection module (#32). If the blast hose assembly (#10) being used does not have a full port hose coupling (#26), install the provided 1-1/2" x 3' lg. adapter hose (#73) between the full port threaded coupling (#27) and the blast hose assembly (#10). **Note:** To reduce operator fatigue a blast whip hose can be used along with the blast hose. A whip hose is thinner wall and lighter weight hose. Consult an Authorized Schmidt® distributor. Longer blast hoses require longer time to dissipate the blast stream when the deadman is released to end the blast operation. This extended dissipation time increases the risk of injury should there be an accidental loss of control of the blast hose. #### 5.13 Blast Nozzle The blast nozzle (#11) is an important part of the blast operation since the size of it determines the air flow and abrasive requirement. The amount of air flow and abrasive determine how quick blasting can be done. The larger the nozzle, the more air and abrasive will be needed. The larger the nozzle size the greater the blast productivity. However, for a fixed amount of air supply, increasing the nozzle size will reduce the blast pressure. For best performance, the blast pressure must be maintained as high as possible. Therefore, select the nozzle size based on the amount of air available, then adjust the abrasive flow at the Thompson® Valve (#14). The nozzle size can be identified by the small number molded into the outer nozzle jacket. Or in the case of ceramic nozzles, by measuring the throat diameter (the smallest inside diameter). The throat diameter is measured in sixteenths of an inch; for example, a #5 nozzle has a throat diameter of 5/16". See the tables in Section 13.0 for approximate air and abrasive consumption for each nozzle. **Note:** For the best possible mixture of air to abrasive, the blast hose and piping must be at least three times the size of the blast nozzle. #### **5.14** Hose Connection All air hose, blast hose, and threaded couplings have two pin holes that align when connected. To protect against accidental hose disconnections, safety pins must be installed through these holes. As a secondary safety measure each hose connection should also include a hose whip check that will hold the hose if there is an accidental disconnection. Connect one loop to each side of the connection and stretch out as shown in Figure 5.4 below. All air hose, blast hose, and threaded couplings have a gasket that seals the connection and should be replaced when air is leaking. See Figure 9.1(c). # **▲ WARNING** Failure to install safety pins on all air and blast hose couplings can result in hose disconnects and could result in serious injury or death. Figure 5.4 – Hose Connection Disconnect Protection #### 5.15 Abrasive Shut-Off Valve The abrasive shut-off valve (#54) is used to block the abrasive flow to the Thompson® Valve (#14). This allows the user to remove the Thompson Valve from the blast vessel without emptying the abrasive. Turn the abrasive shut-off valve handle to the horizontal position to block abrasive flow. The spring clamp (#65) can then be removed to separate the Thompson Valve from blast vessel (#1). See Figure 5.5. # **▲** DANGER The Abrasive blaster is a Pressurized Vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. Figure 5.5 – Abrasive Shut-Off Valve #### **5.16** Mode Selector The mode selector (#47) allows you to quickly switch back and forth between blast pressure and wash down pressure without having to adjust the pressure settings. Move the mode selector (#47) to the up position for blasting. Move the mode selector (#47) to the down position for wash down. #### **5.17** Blast Pressure Regulator To blast objects that are fragile it is necessary to reduce the blast air pressure. The blast pressure regulator (#44) is used to adjust the blast pressure while in "BLAST MODE". The blast pressure is shown by the blast pressure gauge (#49). The adjustment must be made while blasting so the effects are visible. To adjust the blast pressure, pull the regulator knob out to unlock it. Turn the knob clockwise to increase pressure and counterclockwise to decrease pressure. When the desired pressure is reached, push the knob in to lock it and prevent accidental changes. See Section 7.4. #### **5.18 Wash Down Pressure Regulator** The wash down pressure regulator (#46) is used to adjust the blast pressure while in "WASH DOWN MODE". The wash down pressure is shown by the blast pressure gauge (#49). The adjustment must be made while blasting so the effects are visible. To adjust the wash down pressure, pull the regulator knob out to unlock it. Turn the knob clockwise to increase pressure and counterclockwise to decrease pressure. When the desired pressure is reached, push the knob in to lock it and prevent accidental changes. The recommended starting wash down pressure is 50 psi. Make further adjustments to achieve the desired results. See Section 7.7. #### **5.19** Inlet Pressure Gauge The inlet pressure gauge (#45) shows the air pressure supplied by the air compressor. This gauge makes it possible to easily troubleshoot an insufficient air supply. If the pressure on the inlet pressure gauge (#45) drops while blasting, then the air supply is insufficient for the nozzle size and blast pressure combination being used. Refer to Section 3.3 for air requirements. This is especially critical on two outlet units. Fluctuations in the blast pressure will make it impossible to maintain consistent water differential pressure. There are three ways to correct the problem, 1) change to a larger air compressor, 2) change to a smaller nozzle or 3) reduce the blast pressure until no pressure drop is observed on the inlet pressure gauge (#45). See Section 5.17 and refer to Section 7.4 for procedure. ### 5.20 Water Pump The water pump (#58) uses compressed air to create a pressurized water source that is injected into the blast stream as it passes through the injection module (#32). The water pressure is controlled by the water differential pressure regulator (#50). **CRITICAL:** The water pump (#58) must be primed the first time the unit is used or if the water supply drops below the water outlet coupling on the water tank (#57). Do not run the water pump (#58) if the water level falls below the water tank outlet to the water pump. Running the water pump (#58) dry will cause damage to the water pump. Refer to water pump manufacturer's manual for more information. See Section 7.3 for the water pump priming procedure. The water pump does not require lubrication. In cold weather, water must be drained from the water pump to avoid freezing causing costly damage. Close the water tank outlet ball valve (#71) and open the water pump priming ball valve (#56) to drain the water. On 6.5cf dual outlet units also open the snubber drain (#81). #### **5.21** Water Differential Pressure Regulator The water differential pressure regulator (#50) allows you to adjust the water pressure in relationship to the blast pressure. **Note:** The water pressure must <u>always</u> be higher than the blast pressure. The difference in pressure can be seen on the water differential pressure gauge (#51). The adjustment must be made while blasting so the effects are visible. To adjust the water differential pressure, turn the knob clockwise to increase pressure and counterclockwise to decrease pressure. It is recommended to start at 10 psi of differential pressure and then fine-tune to achieve
the desired results. See Section 7.6. #### **5.22** Water On/Off Palm Button Control Valve The water on/off palm button control valve (#48) is used to change between wet blast and dry blast. Pull the palm button out ("ON" position) for wet blast and push the palm button in ("OFF position) for dry blast. When the water on/off palm button control valve (#48) is in the "OFF" position, it stops the air signal to the water shut-off valve (#52) preventing the water from turning on. See drawings in Section 9.3 and 9.12. ### **A** DANGER Wet blasting greatly reduces air borne dust, but the use of a respirator is still required during blast operation. All operators and personnel in the vicinity must wear OSHA approved respiratory protection during the operation of this equipment See Sections 3.9, 3.10, and OSHA 29 CFR 1910.134 #### **5.23** Water Control Valve The water control valve (#52) is a normally closed valve that opens to inject water into the blast stream. The water control valve (#52) opens when it receives air to its signal port. This happens when the deadman lever (#12) is pressed down which opens the blast control valve (#20) sending an air signal to the water shut-off valve (#52). When the deadman lever is released, the air signal from the blast control valve (#20) vents and the water shut-off valve (#52) spring closes to stop the flow of water. See drawing in Section 9.7. ### **5.24** Injection Module The injection module (#32) is where water is introduced into the blast stream. The injection module holds the spray nozzle (#33) in the optimum position to wet the abrasive in the blast stream as it exits the Thompson® Valve (#14). See Section 9.10. **Note:** Models manufactured after 2019 were equipped with the dual port injection module See Section 9.10(a). **CRITICAL:** The injection module (#32) and the spray nozzle (#33) must be orientated correctly to work properly. See drawings in Section 9.10. **CRITICAL:** To function properly, a full port threaded coupling (#27) is required on the outlet of the injection module (#32). If the blast hose assembly (#10) being used does not have a full port hose coupling (#26), install the provided 1-1/2" x 3' lg. adapter hose (#73) between the full port threaded coupling (#27) and the blast hose assembly (#10). ### **5.25 Dual Outlet Blast System** The 6.5cf AmphiBlast™ systems are manufactured as dual outlet. Consult Axxiom Manufacturing or an Authorized Schmidt® distributor. Each blast outlet of dual outlet blast vessels operates as detailed in the sections of this manual. #### 6.0 Pre-operation Procedures ### **▲** DANGER Failure to follow the procedures below could result in serious injury or death. In addition to these procedures completely read and understand all sections of this *Abrasive Blaster Operation and Maintenance Manual*. ### **▲** DANGER The Abrasive Blaster is a pressurized vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. #### 6.1 Abrasive Blaster Setup Procedure (see Figure 6.2) - 6.1.1. Confirm that the abrasive blaster is properly maintained and inspected as detailed in Section 8.0. - 6.1.2. Static electricity is generated by the abrasive flow through the blast hose. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. See Section 5.12. ## **▲** CAUTION Static electric shock hazard. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. See Section 5.12. 6.1.3. To mitigate risk of dust explosion avoid blasting in confined spaces without proper ventilation. Consult plant authorities. See Section 1.20. ## **▲** DANGER Explosion Hazard. Self-Ignition of Dust. Do Not operate the AmphiBlast Abrasive Blast system in confined spaces without proper ventilation. Consult plant authorities. See Section 1.20. 6.1.4. Do Not operate this equipment without a pressure relief device in place. The ASME Code requires that all vessels be provided with pressure relief devices. See Section 3.11. # **▲** DANGER Rupture Hazard. Operating the pressure vessel above the maximum allowable working pressure can result in rupturing the pressure vessel. Install an air pressure relief valve to protect against over pressurization of the blast vessel. See Section 3.11. 6.1.5. Make certain that the abrasive blaster is not pressurized. Follow the depressurizing procedure given in Section 6.2. ## **AWARNING** Airborne particles and loud noise hazards from blowdown exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of blowdown air path. DO NOT place hands or other body parts in the blowdown air path. Make sure no personnel are in the blowdown air path. - 6.1.6. Properly install the handway cover (#22) and gasket (#34). See Section 6.4. - 6.1.7. Verify that all required personal protective equipment is available for each operator and in good operating condition (safety glasses, safety shoes, ear plugs, gloves, airline filter, respirator, & carbon monoxide monitor). Critical: Adhere to all local, state, and federal regulations including, but not limited to, OSHA (Occupational Health and Safety Administration). Pay close attention to requirements regarding breathing air quality. When an oil-lubricated air compressor is used, additional requirements for a high temperature alarm and/or a carbon monoxide monitor become necessary. See Sections 3.9 and 3.10. # **▲** WARNING Failure to use personal protective equipment could result in serious injury or death. - 6.1.8. Hose clamp the deadman (#12) to the blast hose assembly (#10) in a comfortable position behind the nozzle holder (#25). - 6.1.9. Wire tie the twinline hose (#15) or electric deadman extension cords to the blast hose assembly (#10). - 6.1.10. Screw nozzle (#11) into the nozzle holder (#25) at end of the blast hose assembly (#10). - 6.1.11. Connect the blast hose coupling (#26) to the threaded coupling (#27) on the injection module (#32). Then install safety pins (#39) and a hose whip check (#40) to protect against accidental disconnections during operation. See Sections 5.14 and 8.7. **Note:** If the blast hose coupling (#26) is not full port, connect the 1-1/2" x 3" adapter hose (#73) between the injection module (#32) and the blast hose assembly (#10). See Sections 5.14 and 5.24. ## **AWARNING** Failure to install safety pins on all blast hose couplings can result in hose disconnects and could result in serious injury or death. See Sections 5.14 and 8.7. 6.1.12. Connect the twinline hose quick disconnects (#18, #19 & #43) or the electric deadman extension cord to the mating disconnects on the abrasive blaster (#16, #17 & #42). ## **AWARNING** On abrasive blasters with multiple outlets, care must be taken while connecting the twinline hoses or electric deadman extension cords so not to cross connect them. Each must be connected to the matching blast outlet control. Cross connecting will result in unintentional blast startup and could result in serious injury or death. 6.1.13. Connect a 150psi rated (minimum) air supply hose to the air inlet crowfoot (#2) and install safety pins (#39) and a hose whip check (#40) to protect against accidental disconnections during operation. See Sections 5.14 and 8.7. # **AWARNING** Failure to install safety pins on all air hose couplings can result in hose disconnects and could result in serious injury or death. See Sections 5.14 and 8.7. - 6.1.14. The following steps apply only to abrasive blasters with electric systems. Connect the electric power cord (#70) to the power-in plug (#17). - 6.1.15. Connect the electric power cord alligator clips (#70) to the air compressor battery terminals or to another 12Vdc power source. See Figure 6.1. # ▲ CAUTION Electric shock hazard. Abrasive blasters with electric deadman blast control systems must operate on low voltage supply (12-24 volts). To minimize shock hazard, only use low voltage sources and use caution when connecting the power to the abrasive blaster. See Section 3.7. Figure 6.1 – Electric Power Connection ### **6.2** AmphiBlastTM Abrasive Blaster Depressurizing Procedure # ▲ CAUTION Do Not leave the abrasive blaster pressurized during long periods of no usage. An undetected air leak can cause costly damage to the pressure vessel at the handway or abrasive inlet. - 6.2.1. Close the air inlet ball valve (#3). The ball valve is closed when the handle is fully turned to the position shown in Figure 6.2 (handle perpendicular to body). The handle tab will bottom against the ball valve body in the closed position. - 6.2.2. Slowly open the blowdown ball valve (#4). As the blowdown ball valve (#4) is opened, air pressure inside will exhaust and depressurize the blast vessel (#1). # **▲** WARNING Airborne particles and loud noise hazards from blowdown exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of blowdown air path. DO NOT place hands or other body parts in the blowdown air path. Make sure no personnel are in the blowdown air path. 6.2.3. The AmphiBlast abrasive blast vessel (#1) is completely depressurized when the air inlet ball valve (#3) is closed and the blowdown ball valve (#4) is open with no airflow from it. The popup head (#5) will fall open when the blast vessel is completely depressurized. ## **AWARNING** When the popup valve opens after depressurizing, abrasive can be blown out of the blast vessel and into the face and eyes of the operator. Wear OSHA approved safety glasses. See Section 3.10. 6.2.4. The blowdown ball valve (#4) should be inspected for proper
operation before each use of the abrasive blaster. Confirm that the blowdown ball valve handle turns open and closed without difficulty. See Section 8.0 for inspection and maintenance details. Figure 6.2 – AmphiBlast™ With Pneumatic Blast Controls Copyright © 2020 Axxiom Manufacturing, Inc. #### 6.4 Handway Cover Installation Procedures (See Figure 6.4(a)) - 6.4.1. Check that the handway cover, crab, bolt, and gasket are dimensionally correct for the size handway weld ring of the pressure vessel. - a) Measure and write down the inside dimension's "A" and "B" of the handway weld ring. See Figure 6.4(a). - b) Verify the size of the handway assembly by comparing the weld ring measurements from step "a" to the dimensions shown in Table 6.4(c). - c) Verify that the dimensions of the cover, crabs, bolts, and gasket match the corresponding dimensions given in Table 6.4(c). **Note:** The actual dimensions may vary by up to 1/4" from those given in Table 6.4(c). - d) Replace any component that is not dimensionally correct. Incorrect dimensions indicate that the component is part of a different size handway assembly. ### **▲** DANGER The handway assembly is part of a Pressurized Vessel. Use of incorrect handway components will result in assembly failure. Assembly failure will propel objects causing serious injury or death. - 6.4.2. Once a month inspect the handway gasket for tears, cracks, or other wear. Replace if necessary. - 6.4.3. Once a month inspect the handway weld ring sealing surface inside the vessel. Inspect the handway cover sealing surface. Both surfaces must be smooth. - 6.4.4. Place the gasket on the handway cover then fit both through the opening. - 6.4.5. Place the cover and gasket in position against the inside edge of the handway weld ring. Apply a pulling force to hold in position then proceed. *See Note below. - 6.4.6. Center the gasket on the handway weld ring. - 6.4.7. Center the handway cover on the gasket. - 6.4.8. Center the handway crab on the outside weld ring. - 6.4.9. Slide the handway crab bolt to the inside edge of the slot before tightening. See Figure 6.4(a). - 6.4.10. When all components are centered and the crab bolt is bottomed in the slot, tighten the nut onto the bolt with a wrench until snug. - 6.4.11. Only after completing all the pre-operation procedures in Section 6.0 and the abrasive blast vessel is then pressurized, re-tighten the nut with a wrench until snug again. - 6.4.12. Do not over-tighten the crab nut and bolt. Over-tightening could bend the crab out of shape resulting in malfunction of the assembly. - 6.4.13. Periodically check for leaks. *Note: Contact Axxiom Manufacturing or an Authorized Schmidt distributor and request information on the new SureFitTM Handway Gasket (patent pending) that eliminates the difficulty of aligning the gasket. Scan the QR Tag on the left to view a short video. Figure 6.4(a) - Handway Assembly Figure 6.4(b) - Handway Components | 6" > | « 8" Handway Dimensi | ons | |------------------|----------------------|----------| | Component | Α | В | | Weld Ring | 6-5/8" | 8-1/2" | | Handway Cover | 7-5/8" | 9-3/4" | | Handway Gasket | 7-3/4" | 9-3/4" | | SureFit™ Gasket | 8-1/16" | 10-5/16" | | Handway Crab | 2-3/8" | 8-3/4" | | Square Head Bolt | 3/4"-10 UNC | 4-1/2" | Table 6.4(c) – Handway Component Dimensions ### 7.0 Operating Instructions #### 7.1 Filling the Abrasive Blaster with Abrasive 7.1.1. The Abrasive blaster must be completely depressurized before filling with abrasive. Follow the depressurizing procedure in Section 6.2. Disable the blaster by closing the air inlet ball valve (#3). # **▲** WARNING Airborne particles and loud noise hazards from blowdown exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of blowdown air path. DO NOT place hands or other body parts in the blowdown air path. Make sure no personnel are in the blowdown air path. - 7.1.2. Remove the vessel lid (#29) and screen (#30) to check that the popup (#5) has dropped open. The open popup indicates that the blast vessel is depressurized. See Figure 7.1. - 7.1.3. Fill the blaster with dry abrasive though the abrasive inlet (#6). Pass recycled abrasive through the screen (#30) to remove trash. Do not over-fill the blast vessel. An excessive amount of abrasive piled above the popup (#5) after the blast vessel is full may prevent the popup from sealing properly. # **AWARNING** Pinch point hazard. Vessel pressurization will close the popup. Keep hands and fingers away from popup. Disconnect air supply prior to performing popup maintenance. 7.1.4. After completing all the pre-operation procedures in Sections 6.0 and 7.1 pressurize the abrasive blast vessel per Section 7.4, and then check the popup for leaks. Periodically check the popup for leaks thereafter. Figure 7.1 – AmphiBlast™ With Pneumatic Blast Controls #### 7.2 Filling the Water Tank - 7.2.1. Close water tank drain/pressure washer connection port ball valve (#63). - 7.2.2. Unscrew water tank (#57) cap and set to side. - 7.2.3. Fill water tank (#57) with fresh clean water to the desired level. - 7.2.4. If required, rust inhibitor can be added to the water tank (#57). Follow the instructions from the rust inhibitor manufacturer for the correct amount. - 7.2.5. Re-install water tank (#57) cap. #### 7.3 Priming the Water Pump - 7.3.1. Make sure to fill the water tank (#57) before priming the water pump (#58). See Section 7.2. **CRITICAL:** Running the water pump (#58) dry will cause damage to the water pump. - 7.3.2. Clean out debris from the water pump strainer (#59). Temporarily close the water tank outlet ball valve (#71) to clean the strainer. - 7.3.3. Open the water tank outlet ball valve (#71). - 7.3.4. Close the water pump air supply ball valve (#60). - 7.3.5. Close the blowdown ball valve (#4). - 7.3.6. Slowly open the air inlet ball valve (#3). This will pressurize the abrasive blaster (#1) and supply air to the controls. - 7.3.7. Open the water pump priming ball valve (#56). On single outlet units, it is located on the bottom of the snubber tank (#55). On two outlet units, it is located on the high-pressure outlet of the water pump (#58). - 7.3.8. Turn the knob of the water differential pressure regulator (#50) counterclockwise until the water pump air supply pressure gauge (#66) reads 0 psi. - 7.3.9. Open the water pump air supply ball valve (#60). - 7.3.10. Slowly turn the water differential pressure regulator knob (#50) clockwise until the water pump air supply pressure gauge (#66) reaches 25 psi. - 7.3.11. Close the water pump priming ball valve (#56) after you see a steady stream of water coming out of the ball valve outlet. - 7.3.12. The water pump (#58) will continue to cycle until the system is pressurized. ### 7.4 Setting the Blast Pressure - 7.4.1. The abrasive blaster must be properly setup and all operating personnel must be thoroughly trained before beginning the blast operation. All operators must completely read and understand all sections of this manual before beginning the blast operation. See the pre-operation procedures given in Section 6.0. - 7.4.2. Perform the required inspections and maintenance before beginning the blast operation. See the instructions given in Section 8.0. The abrasive blaster is a Pressurized Vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. - 7.4.3. Open the choke valve (#13). - 7.4.4. Switch the mode selector (#47) to "BLAST MODE". - 7.4.5. Turn the water off by pushing in the palm button on the water on/off palm button control valve (#48) - 7.4.6. Turn the abrasive cutoff valve/switch (#62) to the "OFF" position. See Figure 5.3. - 7.4.7. Close the blowdown ball valve (#4). The ball valve is closed when the handle is perpendicular to the body (See Figure 7.1). - 7.4.8. Slowly open the inlet ball valve (#3). This will pressurize the abrasive blaster and supply air to the deadman controls (#12 & #15). - 7.4.9. Check the popup, handway, hoses, and piping for leaks while the blaster is pressurized. - 7.4.10. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin blasting, aim the blast nozzle at the object to be blasted, then firmly press down the deadman lever (#12). Air will flow into the blast hose and out of the blast nozzle (#11). ## **AWARNING** Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. - 7.4.11. Turn the blast pressure regulator knob (#44) to set the blast pressure gauge (#49) to the desired blasting pressure. See Section 5.17 for procedure. - 7.4.12. Observe the inlet pressure gauge (#45) and blast pressure gauge (#49) to make sure the pressure is not dropping. - 7.4.13. If the pressure is dropping, then slowly lower the blast pressure until the inlet pressure and blast pressure are maintained while blasting. Release deadman lever to stop blasting. If balanced inlet and blast pressure are not achieved at a reasonable level, it may be necessary to obtain a larger air compressor or change to a smaller blast nozzle size (See Section 5.19). - 7.4.14. On two outlet units, repeat this same procedure with the first outlet blasting continuously while turning the second blast outlet on and off. Make sure that while both outlets are blasting, that the inlet pressure is not dropping and when the second outlet is turned on and off that the blast pressure on the first outlet is maintained. ### 7.5 Beginning the Dry Blasting Operation - 7.5.1. The abrasive blaster must be properly setup and all operating personnel must be thoroughly trained before beginning the blast operation. All operators must completely read and understand all sections of this manual before beginning the blast operation. See the pre-operation procedures given in
Section 6.0. - 7.5.2. Perform the required inspections and maintenance before beginning the blast operation. See the instructions given in Section 8.0. # **▲** DANGER The abrasive blaster is a Pressurized Vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. - 7.5.3. Open the abrasive shutoff valve (#54). - 7.5.4. Open the choke valve (#13). Always leave the choke valve completely open while blasting. Close the choke valve only for the "choke" procedure (see Section 11.3.2.). Do Not blast for long periods with the choke valve partially closed since this will cause excessive wear in the Thompson® Valve (#14). - 7.5.5. Switch the mode selector (#47) to "BLAST MODE". - 7.5.6. Turn the water off by pushing in the palm button on the water on/off palm button control valve (#48) - 7.5.7. Turn the abrasive cutoff valve/switch (#62) to the "ON" position. See Figure 5.3. - 7.5.8. For initial startup, the Thompson Valve (#14) should only be partially open. Turn the valve knob clockwise to completely close, then turn counterclockwise about four turns to partially open. The best setting for the valve varies depending on abrasive type, blast pressure, and nozzle size; therefore, it may take more than one adjustment to achieve the desired air/abrasive mixture. Further adjustment can be made later as needed. - 7.5.9. Close the blowdown ball valve (#4). The ball valve is closed when the handle is perpendicular to the body (See Figure 7.1). - 7.5.10. Slowly open the inlet ball valve (#3). This will pressurize the abrasive blaster and supply air to the deadman controls (#12 & #15). - 7.5.11. Slightly open the ball valve (#8) on bottom of the moisture trap (#7) to permit moisture to continually drain during the blast operation (optional, see Section 5.4). Once each day completely open the drain valve to blow out all moisture and dirt particles. - 7.5.12. Check the popup, handway, hoses, and piping for leaks while the blaster is pressurized. Periodically check for leaks thereafter. - 7.5.13. The following steps are for abrasive flow setting which may require several adjustments and testing of the blast flow. It is recommended that testing of the blast be made on a test piece so not to damage anything of value. - 7.5.14. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin blasting, aim the blast nozzle at the object to be blasted, then firmly press down the deadman lever (#12). Air and blast abrasive will flow into the blast hose and out of the blast nozzle (#11). ### **AWARNING** Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. - 7.5.15. Turn the blast air pressure regulator knob (#44) to set the blast pressure gauge (#49) to the desired blasting pressure. See Section 5.17 for procedure. - 7.5.16. Observe the blast stream and the coating removal rate. A bluish color in the blast stream indicates a good abrasive to air mixture. Release the deadman lever to stop blasting. - 7.5.17. If necessary, adjust the abrasive flow with the knob on the Thompson® Valve (#14). Turn clockwise for less abrasive flow or turn counterclockwise for more abrasive. Due to the length of the blast hose there will be a slight delay in control of the abrasive flow at the nozzle, therefore allow a few seconds before adjusting further. - 7.5.18. Note the VPI® decal setting on the side of the Thompson Valve II cap to view the knob position relative to the abrasive flow. The markings relative to the knob can be used as reference when changing nozzle size or abrasive for different applications. - 7.5.19. Re-test the blast air and abrasive mixture again on a test piece to determine if further adjustment is needed. Release the deadman lever (#12) to stop blasting. Replace screen (#30) and lid (#29) to prevent debris from entering blaster vessel. ### 7.6 Beginning the Wet Blasting Operation - 7.6.1. The abrasive blaster must be properly setup and all operating personnel must be thoroughly trained before beginning the blast operation. All operators must completely read and understand all sections of this manual before beginning the blast operation. See the pre-operation procedures given in Section 6.0. - 7.6.2. Perform the required inspections and maintenance before beginning the blast operation. See the instructions given in Section 8.0. # **▲** DANGER The abrasive blaster is a Pressurized Vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. - 7.6.3. Open the abrasive shutoff valve (#54). - 7.6.4. Open the choke valve (#13). Always leave the choke valve completely open while blasting. Close the choke valve only for the "choke" procedure (see Section 11.3.2.). Do Not blast for long periods with the choke valve partially closed since this will cause excessive wear in the Thompson Valve (#14). - 7.6.5. Switch the mode selector (#47) to "BLAST MODE". - 7.6.6. Turn the water "on" by pulling out the palm button on the water on/off palm button control valve (#48). - 7.6.7. Turn the abrasive cutoff valve/switch (#62) to the "OFF" position. See Figure 5.3. - 7.6.8. For initial startup, the Thompson® Valve (#14) should only be partially open. Turn the valve knob clockwise to completely close, then turn counterclockwise about four turns to partially open. The best setting for the valve varies depending on abrasive type, blast pressure, and nozzle size; therefore, it may take more than one adjustment to achieve the desired air/abrasive mixture. Further adjustment can be made later as needed. - 7.6.9. Close the blowdown ball valve (#4). The ball valve is closed when the handle is perpendicular to the body (See Figure 7.1). - 7.6.10. Slowly open the inlet ball valve (#3). This will pressurize the abrasive blaster and supply air to the deadman controls (#12 & #15). - 7.6.11. Slightly open the ball valve (#8) on bottom of the moisture trap (#7) to permit moisture to continually drain during the blast operation (optional, see Section 5.4). Once each day completely open the drain valve to blow out all moisture and dirt particles. - 7.6.12. Check the popup, handway, hoses, and piping for leaks while the blaster is pressurized. Periodically check for leaks thereafter. - 7.6.13. The following steps are for setting the water flow and wetting the blast hose (#10). The water differential pressure gauge (#51) setting can only be seen while blasting, so it is easier to perform this adjustment with two people. ### **A** DANGER Wet blasting greatly reduces air borne dust, but the use of a respirator is still required during blast operation. All operators and personnel in the vicinity must wear OSHA approved respiratory protection during the operation of this equipment See Sections 3.9, 3.10, and OSHA 29 CFR 1910.134 7.6.14. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin blasting, aim the blast nozzle (#11) at the object to be blasted, then firmly press down the deadman lever (#12). Air will flow into the blast hose and out of the blast nozzle (#11). ### **AWARNING** Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. - 7.6.15. Turn the blast air pressure regulator knob (#44) to set the blast pressure gauge (#49) to the desired blasting pressure. See Section 5.17 for procedure. - 7.6.16. Adjust the water differential pressure regulator (#50) until the desired water flow is achieved. See Section 5.21 for procedure. It could take approximately 10-15 seconds for the blast hose (#10) to become wetted and for water to reach the blast nozzle (#11). This delay only happens when starting with a dry blast hose (#10). Once the blast hose (#10) has been wetted, the water will reach the blast nozzle (#11) instantly on subsequent start-ups. Release the deadman lever (#12) to stop blasting. **Note:** The water pressure must <u>always</u> be higher than the blast pressure. The difference in pressure can be seen on the water differential pressure gauge (#51). The differential pressure must be at least 2psi (10psi is recommended). - 7.6.17. Turn the abrasive cutoff valve or switch (#62) to the "ON" position. See Figure 5.3. - 7.6.18. The following steps are for abrasive flow setting which may require several adjustments and testing of the blast flow. It is recommended that testing of the blast be made on a test piece so not to damage anything of value. - 7.6.19. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin blasting, aim the blast nozzle (#11) at the object to be blasted, then firmly press down the deadman lever (#12). Air and wet blast abrasive will flow into the blast hose and out of the blast nozzle (#11). # **▲ WARNING** Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. - 7.6.20. Observe the blast stream and the coating removal rate. Release the deadman lever (#12) to stop blasting. - 7.6.21. If necessary, adjust the abrasive flow with the knob on the Thompson® Valve (#14). Turn clockwise for less abrasive flow or turn counterclockwise for more abrasive. Due to the length of the blast hose there will be a slight delay in control of the abrasive flow at the nozzle, therefore allow a few seconds before adjusting further. - 7.6.22. Note the VPI® decal setting on the side of the Thompson Valve II cap to view the knob position relative to the abrasive flow. The markings relative to the knob can be used as reference when changing nozzle size or
abrasive for different applications. - 7.6.23. Re-test the blast air, water, and abrasive mixture again on a test piece to determine is further adjustment is needed. Release the deadman lever (#12) to stop blasting. Replace screen (#30) and lid (#29) to prevent debris from entering blaster vessel. - 7.6.24. It may be necessary to make further adjustments to the water flow after final abrasive flow adjustments are complete. - 7.6.25. After blasting is finished for the day it is a good idea to purge the wet abrasive from the blast hose (#10). Turn the abrasive cutoff valve or switch (#62) to the "off" position. See Figure 5.3. Continue to blast until all blast abrasive has been cleared from the blast hose (#10) and you are only getting air and water out of the blast nozzle (#11). #### 7.7 Wash Down Operation - 7.7.1. Switch the mode selector (#47) to "WASH DOWN MODE". - 7.7.2. Turn the water "ON" by pulling out the palm button on the water on/off palm button control valve (#48) - 7.7.3. Turn the abrasive cutoff valve or switch (#62) to the "OFF" position. See Figure 5.3. - 7.7.4. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin wash down, aim the blast nozzle (#11) at the object to be cleaned, then firmly press down the deadman lever (#12). Air and water will flow into the blast hose and out of the blast nozzle (#11). - 7.7.5. Turn the wash down pressure regulator knob (#46) to set the blast pressure gauge (#49) to the desired wash down pressure. See Section 5.18 for procedure (recommended starting point is 50 psi, then adjust for the desired results). - 7.7.6. Leave the water differential pressure setting as it was during wet blasting, but it can be adjusted if necessary. Turn the water differential pressure regulator (#50) knob counterclockwise for less water and clockwise for more water. Release the deadman lever (#12) to stop wash down. - 7.7.7. You can also use a pressure washer for the wash down operation using the AmphiBlastTM water supply. This saves time by not having mix another batch of water and rust inhibitor. - 7.7.8. Attach one end of a standard water hose to the water tank drain ball valve (#63) and the other end to a pressure washer. - 7.7.9. Open the water tank drain ball valve (#63). You can now use the pressure washer. - 7.7.10. After the pressure washer wash down has been completed, close the water tank drain ball valve (#63) and disconnect the water hose. ### 7.8 Blow Off Operation - 7.8.1. Switch the mode selector (#47) to "BLAST MODE". - 7.8.2. Turn the water "Off" by pushing in the palm button on the water on/off palm button control valve (#48) - 7.8.3. Turn the abrasive cutoff valve or switch (#62) to the "OFF" position. See Figure 5.3. - 7.8.4. With one hand grip the blast hose assembly (#10) and with the other hand press in the deadman safety button. To begin blow off, aim the blast nozzle (#11) at the object to be dried or cleaned, then firmly press down the deadman lever (#12). Air only will flow into the blast hose and out of the blast nozzle (#11). - 7.8.5. Turn the blast air pressure regulator knob (#44) to set the blast pressure gauge (#49) to the desired blow off pressure. See Section 5.17 for procedure. Release the deadman lever (#12) to stop blow off. #### 7.9 Ending the Blast Operation 7.9.1. Close the air inlet ball valve (#3). The ball valve is closed when the handle is fully turned to the position shown in Figure 7.1 (handle perpendicular to body). The handle tab will bottom against the ball valve body in the closed position. # ▲ CAUTION Do not turn off the air compressor and allow the abrasive blaster air pressure to back flow through the air supply system. Back flow will carry abrasive into the moisture trap (#7) and contaminate the controls. - 7.9.2. Completely open the drain ball valve (#8) at the bottom of the moisture trap (#7) to allow all the accumulated moisture to be drained out. Close the ball valve after draining. - 7.9.3. Completely depressurize the abrasive blast vessel (#1) by slowly opening the blowdown ball valve (#4). See Section 6.2 for blowdown procedure. # **▲** WARNING Airborne particles and loud noise hazard from the blowdown exhaust air can cause serious injury and loss of hearing. Wear approved eye and ear protection. Stay clear of blowdown air path. DO NOT place hands or other body parts in the blowdown air path. Make sure no personnel are in the blowdown air path. # **▲** CAUTION Do Not leave the abrasive blaster pressurized during long periods of no usage. An undetected air leak can cause costly damage to the pressure vessel at the handway or abrasive inlet. 7.9.4. For long periods of non-usage remove remaining blast abrasive from blast vessel to minimize moisture contamination. Replace lid (#29) to prevent debris from entering blast vessel (#1). Steel abrasive left inside the blast vessel can be contaminated by moisture and solidify inside causing costly damage. #### 8.0 Maintenance and Inspection Instructions ### **▲** DANGER The abrasive blaster is a Pressurized Vessel. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. ### **AWARNING** For proper operation, maintenance should be performed with the assistance of a qualified serviceman. - 8.1. *Blaster Pressure Vessel:* The ASME Code is a standard covering materials, design, fabrication, and installation. Vessel integrity after purchase is the responsibility of the owner and/or user. At intervals required by state law and/or local authorities, the vessel should be subjected to a hydrostatic test as described in the ASME Code, Section VIII, Division 1. Do Not subject the abrasive blaster pressure vessel to a pneumatic proof test exceeding the maximum allowable working pressure. In no case should the hydrostatic test pressure exceed 1.3 times the maximum allowable working pressure (MAWP) shown on the pressure vessel nameplate (#24). Thoroughly clean and dry the vessel before re-assembly. Moisture or debris left in vessel can cause equipment malfunction. - 8.2. **Blaster Pressure Vessel:** Any damage to an abrasive blaster can make it unsafe. Inspect the exterior of the abrasive blast vessel weekly for corrosion, pitting, or other damage (i.e. dents, gouges or bulges). If damaged, take out of service immediately and have it inspected and/or repaired by a qualified facility. Contact Axxiom Manufacturing, Inc. for technical support. - 8.3. **Blaster Pressure Vessel:** The interior condition of the abrasive blast vessel (#1) should be inspected quarterly. Pitting caused by corrosion will reduce the wall thickness of the vessel. If excessive corrosion is found, have the abrasive blast vessel inspected by a qualified facility. Contact Axxiom Manufacturing, Inc. for technical support. Refer to the ASME Data Report for the vessel minimum thickness. - Check the pressure vessel internal piping for corrosion, cracks, wear, holes, or any other damage. Repair or replace damaged components. See Figure 8.1. - 8.4. **Popup Assembly:** The popup alignment and operation are tested by the manufacturer, however vibration and creeping during shipment may cause the internal popup support piping to shift resulting in misalignment. Check the popup gap and alignment prior to initial usage and weekly thereafter. Inspect the popup as follows: - a) Depressurize the abrasive blaster per Section 6.2. - b) Disconnect air supply hose from the crowfoot (#2). - c) Inspect the popup gasket (#6) and popup head (#5) sealing surfaces for wear or deformations. Replace either if necessary. - d) Check that the popup is centered within the gasket opening. If necessary, use a pry bar as a lever between the popup and gasket to deflect the internal support piping and shift the popup to the center of the gasket opening. - e) Check the popup gap (distance between the popup surface and the gasket). It should be between 5/8" and 7/8". See Figure 8.1. An excessive gap is created by a vertical nipple that is too short. An excessive gap will expose the top of the vertical nipple to abrasive when the popup closes which could result in premature wear to the popup. - f) After checking the alignment and gap, the blast vessel can be re-pressurized, and the popup is then checked for leaks. If a leak is present, repeat the above steps to isolate the problem. # **▲ WARNING** Pinch point hazard. Vessel pressurization will close the popup. Keep hands and fingers away from popup. Disconnect air supply prior to performing popup maintenance. Figure 8.1 - Standard Popup Assembly and Internal Piping 8.6. **Blast and Air Hoses, Piping, Pipe Fittings, and Wires:** All air hoses, blast hoses, control hoses, pipe, pipe fittings, and wires are wear items on any abrasive blaster. These components should be inspected daily for air leaks, cracks, holes, dry rotting, cuts, or any other damage. Repair or replace any components that show any signs of wear or damage. ### **▲** DANGER Damaged hoses, piping, pipe fittings or wires can cause system malfunctions and can result in serious injury or death to operating personnel. Blast hoses are a high wear component of the abrasive blast system. Sharp bends in the blast hose create high wear points resulting in soft spots where the blast hose wall has thinned. These areas can rupture while blasting. Check the full length of the blast hose assembly for soft spots caused by wear. To protect against serious injury to personnel replace blast hoses with soft spots. **Note:** Static electricity is generated by the abrasive flow through the blast hose. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. See Section 5.14. ### **AWARNING** Worn blast hose assemblies can rupture while blasting and
the resulting abrasive blast stream can cause serious personal injury. ### **AWARNING** Longer blast hoses require longer time to dissipate the blast stream when the deadman is released to end the blast operation. This extended dissipation time increases the risk of injury if there is an accidental loss of control of the blast hose. ## **▲** CAUTION Static electric shock hazard. To minimize chance of static electrical shock to operating personnel only use anti-static blast hose, properly electrically bond the blast nozzle, blast hose couplings, and the equipment, and properly install an earth ground to the abrasive blaster. See Section 5.14. 8.7. **Blast and Air Hose Couplings:** All air hose, blast hose, and threaded couplings have two pin holes that align when connected. To protect against accidental hose disconnections, safety pins must be installed through these holes. Each hose connection must also include a hose whip check that will hold the hose if there is an accidental disconnection. Connect one loop to each side of the connection and stretch out as shown in Figure 8.2 below. Check hose connections daily and replace missing or damaged pins and whip checks. Failure to install safety pins on all air and blast hose couplings can result in hose disconnects and could result in serious injury or death. Figure 8.2 – Hose Connection Disconnect Protection 8.8. **Blast and Air Hose Gaskets:** All air hose, blast hose, and threaded couplings have gaskets that seal the connection. To reduce loss of air pressure and/or premature abrasive wear replace these gaskets when leaks are found. Inspect the couplings daily for leaks and wear. Replace gaskets when visible wear or leaks are found. When installing or replacing hose couplings cut the hose end square for secure fit (see Figure 8.3). To assure proper coupling connection always use fittings that are the same brand. See the drawings and part lists in Section 9.0. Figure 8.3 - Hose End Fit up 8.9. *Blast Nozzle(s):* Remove the blast nozzle daily and check the jacket and thread condition. Check nozzle throat diameter. An over-sized throat diameter reduces blast efficiency. Replace the blast nozzle if worn or damaged. Figure 8.4 - AmphiBlast™ With Pneumatic Blast Controls 8.10. *Valves:* Thompson® Valves, TeraValveTM XLTM, Automatic air valves, MV3® Valves, ComboValve®, control valves, and deadman valves should be disassembled and inspected quarterly, or more frequently if heavily used. Ball valves should open and close without difficulty and should not leak air. Repair or replace any component that shows signs of damage. The Thompson® Valve cylinder should be cleaned and lubricated with an anti-seize compound. Replace parts as needed with Schmidt® original factory replacement parts furnished by an authorized Schmidt distributor. Refer to valve drawings in Section 9.0 and specific valve maintenance manual. Once a day check if air is leaking from end of blast nozzle when the blast operation is off. A worn seat or trash in the Thompson or TeraValveTM usually causes this (See Section 11.3.5). Clean or replace by removing the four bolts in the base of the valve to allow disassembly. Depressurize vessel before performing any maintenance. See Section 6.2. Removing the Thompson valve bolts with the abrasive blaster pressurized will result in serious injury or death. # **▲** WARNING Use of replacement components that are not Schmidt® original factory replacement parts may result in equipment failure which can result in serious personal injury. 8.11. **Blowdown Ball Valve:** The blowdown ball valve (#4) is used to depressurize the abrasive blaster pressure vessel (#1). See Figure 8.4. The blowdown air flow can carry abrasive from inside the pressure vessel which can wear the blowdown ball valve (#4) and piping. This wear will cause the blowdown ball valve (#4) to be difficult to open and/or close leading to the inability to close properly causing air leaks. The blowdown air flow will also wear the pipe fittings in line. When any of these conditions develop, it will be noticeable during daily blowdown operation. When any malfunction is detected the blowdown ball valve (#4) and attaching fittings should be replaced. ### **AWARNING** Worn blowdown valve, piping, and pipe fittings can rupture during operation which can cause serious injury or death to operating personnel. Always repair or replace worn or damaged components. The blowdown ball valve (#4) should be inspected for proper operation before each use of the abrasive blaster. Depressurize the abrasive blaster per Section 6.2 then confirm that the blowdown ball valve handle turns open and closed without difficulty. Difficulty in turning the blowdown ball valve handle indicates grit contamination within the moving parts of the valve. **Note:** Once maintenance is completed as detailed in Section 8.0 and the abrasive blaster is repressurized confirm there is no air leakage when the blowdown ball valve (#4) is closed. The ball valve is closed when the handle is fully turned to the position shown in Figure 8.4 (handle perpendicular to body). When any malfunction is detected the blowdown ball valve (#4) and attaching fittings should be replaced. When replacing the blowdown ball valve (#4), also replace the blowdown restrictor (#79) which is upstream of the ball valve. See Figure 8.4. 8.13. **PPE:** Check daily to verify that all personal protective equipment is available for each blast operator. Check daily to verify that all personal protective equipment is in good operating condition. Consult the operating and maintenance instructions provided by the manufacturer of each PPE item. See Section 3.10 and reference OSHA 29 CFR 1910 Subpart I. ## **▲** WARNING Failure to use personal protective equipment could result in serious injury or death. 8.14. *Warning Decals:* Check monthly to verify that all the warning decals are in position and legible. See Section 0.0 for full descriptions and locations. ### **▲** DANGER Failure to maintain warning decals risks the possibility of not alerting the abrasive blaster operator to potential dangers which can result in serious injury or death. See Section 0.0. - 8.15. *Handway Assembly:* Refer to Section 6.4 for installation and inspection procedures. - 8.16. *Moisture Separator & Control Air Filter:* Once a day with the air supply on, completely open the moisture separator drain ball valve (#8) and the control air filter (#23) petcock to purge all moisture and debris. - 8.17. *Snubber Tank Outlet Micron Filter:* Once a week remove and clean the filter element located inside strainer (#74). Clean more frequently if a decrease of water pressure is detected. - 8.18. Water Supply Strainer: Once a week remove and clean the water strainer element (#59). - 8.19. **Blast Signal Filter:** Once a quarter remove and clean the blast pressure signal filter (#68). - 8.20. *Water Pump:* Once a quarter disassemble, clean, and re-lubricate air drive section of the water pump (#58). Refer to manufacturer manual Section 14.0 for maintenance requirements. ### 8.21. Maintenance Schedules Quick Reference Charts **Note:** The below schedule is the minimum requirements for inspection and maintenance; however, the equipment should be inspected and serviced immediately if abnormal operation is detected. | Item | Maintenance required | Daily | Weekly | Monthly | Quarterly | |--|---|-----------|-----------------|----------------|-------------| | Blaster
Vessel | Hydrostatic Test
See Section 8.1. | As requir | ed by state lav | w and/or local | authorities | | Blaster
Vessel | Check for exterior damage (corrosion, dents, bulges).
See Section 8.2. | | X | | | | Blaster
Vessel | Check for interior wear, corrosion, & pitting.
Check internal piping for wear or damage.
See Section 8.3. | | | | X | | Popup | Check sealing surfaces, alignment, and gasket to popup gap. See Section 8.4. | | X | | | | Blast & Air
Hoses | Check air & blast hoses for soft spots, wear, cracks, or air leaks.
See Section 8.6. | X | | | | | Remote
Control
Hoses | Check control air hoses for soft spots, wear, cracks, or air leaks
See Section 8.6. | X | | | | | Blaster Piping
&
Pipe Fittings | Check pipe & pipe fittings for wear, cracks, or air leaks.
See Section 8.6. | X | | | | | Remote
Control
Wires | Check wiring for bare spots, fraying, cuts, or cracks. See Section 8.6. | X | | | | | Blast & Air
Hose
Couplings | Check for safety pins and whip checks. See Section 8.7. | X | | | | | Hose
Coupling
Gaskets | Check for leaks at air, blast, and threaded hose coupling gaskets. See Section 8.8. | X | | | | | Blast Nozzle | Check blast nozzle threads and jacket for wear, damage, or air leaks. See Section 8.9. | X | | | | | Valves | With valves off and blast vessel pressurized check for air leaks at blast nozzle. See Section 8.10 | X | | | | | Valves | Disassemble, inspect, and lubricate. Check for proper operation.
See Section 8.10. | | | | X | | Blowdown
Ball Valve | Check for proper opening and closing. Check for wear, damage, or air leaks. See Section 8.11. | | Before 6 | every use | | | Personal
Protective
Equipment | Check for presence and condition of all personal protective equipment. See Sections 3.10 and 8.13. | X | | | | | Warning
Decals | Check for presence and condition of all warning decals. See Sections 0.0 and 8.14. | | | X | | | Handway
Assembly | Check gasket for wear, cracking, or dry rotting. Check sealing surfaces for damage. See Sections 6.4 and 8.15. | | | X | | | Moisture Separator
& Control Air Filter | Fully open drain ball valve and strainer petcock to purge moisture and debris. See Section 8.16. | X | | | | | Snubber Tank Outlet
Micron Filter | Disassemble to remove and clean strainer
element.
See Section 8.17. | | X | | | | Water Supply
Strainer | Disassemble to remove and clean strainer element.
See Section 8.18. | | X | | | | Blast Air Signal
Micron Filter | Disassemble to remove and clean strainer element.
See Section 8.19. | | | | X | | Water
Pump | Disassemble clean and lubricate air drive system per manufacturer's recommendation. See Section 8.20. | | | | X | ### 9.0 Drawings and Parts Lists The following pages contain drawings representing typical blast control systems and components. Determine the type of control system the abrasive blast system is equipped with (pneumatic or electric controls) then reference the appropriate drawing and parts list to determine the required parts. To assure the proper operation of the blast system only use Schmidt® original factory replacement parts furnished by an authorized Schmidt distributor. See Section 1.39 and Section 12.2.12. ### 9.1(a) AmphiBlastTM Pneumatic Control System Parts List | TEM | PART NUMBER | DESCRIPTION | ITEM | PARTNUMBER | DESCRIPTION | |-----|---------------|---|------|--------------|---| | - | 8201-040-00AP | Pressure vessel, 4.5 cu.ft. 1-oubet (150 psi) Painted | | 8710-98778 | Hose whip check (safety cable) | | 9 / | 8202-060-00AP | Pressure vessel, 6.5 cu.ft. 2-outlet (150 psi) Painted | 14 | 7031-999-02 | Warning decal kit | | 2 | 4211-108 | Crowfoot, 1-1/2" 4-lug (1-outlet system) | 42 | 4224-300-02 | Male quick connect, 1/4" | | | 4211-109 | Crowfoot, 2" 4-lug (2-outlet system) | 43 | 4224-301-02 | Fernale quick connect, 1/4* | | | 4211-999 | Crowfoot gasket | 44 | 2001-011 | Blast pressure regulator | | 67 | 2401-508 | Air inlet ball valve, 1-1/2" (1-outlet system) | 45 | 8710-40007A | Inlet pressure gauge 0-160 psi | | | 2401-509 | Air inlet ball valve, 2* (2-outlet system) | 46 | 8200-000-26 | Wash down pressure regulator 0-100 psi | | 4 | 2401-504 | Blowdown ball valve, 1/2" | 47 | 8200-000-17 | Mode selector switch | | 2 | 2100-010 | Popup head | 48 | 2229-301 | Water on/off palm button control valve (See Section 9.12) | | 9 | 2100-011 | Popup gasket | 49 | 8710-40007A | Blast pressure gauge 0-160 psi | | 7 | 8221-030-00DP | Moisture separator 400 CFM (1-outlet system) | 20 | 2006-002 | Water differential pressure regulator | | | 8202-080-00DP | Moisture separator 800 CFM (2-outlet system) | 51 | 8200-000-12 | Water differential pressure gauge 0-30 psi | | 8 | 2401-502 | Drain ball valve, 1/4" | 52 | 8200-000-08 | Water control valve (See Section 9.7) | | 6 | 2123-108L | Automatic Air Valve (See Section 9.5) | 53 | 8200-000-29 | Check valve, 1/4" (Blast Spray) | | 10 | 4104-XXX-XX | Blast hose assembly (specify size) | 25 | 2401-907 | Abrasive shut-off valve | | 11 | XXX-0009 | Blast nozzle (specify size) | 55 | 8201-040-00C | Snubber tank (1-outlet system) | | 12 | 2263-002 | G2 Deadman valve (See Section 9.8) | | 8202-060-00C | Snubber tank (2-outlet system) | | 13 | 2401-508 | Choke ball valve, 1-1/2" | 56 | 2401-502 | Water pump priming ball valve, 1/4" | | 14 | 2152-108D | Thompson® Valve II, 1-1/2" PU wildiverter plate (See Section 9.4) | 25 | 8200-000-19 | Water tank 80 gallon (1-outlet system) | | | 2152-008D | Thompson® Valve II, 1-1/2" TC w/diverter plate (See Section 9.4) | | 8200-000-42 | Water tank 165 gallon (2-outlet system) | | 15 | 4100-501-02 | Twinline hose assembly with ACO, 55 ft | 58 | 2210-002 | Water pump | | | 4100-701-02 | Twinline hose assembly with ACO, 110 ft | 28 | 8200-000-152 | Strainer w/ clear housing, 3/4" (200 mesh) | | 16 | 4224-301-02 | Female quick connect, 1/4" | 9 | 2401-502 | Water pump air supply ball valve, 1/4" | | 17 | 4224-300-02 | Male quick connect, 1/4" | 61 | 3014-008 | Plug. 1-1/2* | | 18 | 4224-300-02 | Male quick connect, 1/4" | 62 | 2025-010 | Abrasive cutoff valve | | 18 | 4224-301-02 | Female quick connect, 1/4" | 63 | 2401-505 | Drain ball valve, 3/4" | | 20 | 2229-000 | Pneumatic control valve (See Section 9.6) | 64 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 21 | 2014-300 | Breather vent, 1/8" | 99 | 8710-98502 | Clamp fitting, 1-1/4" MNPT | | 22 | 7000-001-11 | Handway assembly, 6" x 8" with gasket | | 8710-923015 | Tri-clamp (spring loaded) | | 23 | 2302-204-05 | Air filter, 1/2" (5 micron) | 38 | 8710-98503 | Tri-clamp o-ring | | 24 | - | Pressure vessel nameplate | 99 | 8200-000-37 | Water pump air supply pressure gauge 0-60 psi | | 22 | 4215-XXX | Nozzle holder (specify size) | - 67 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 26 | 4213-XXX | Blast hose coupling (specify size) | 89 | 8710-98578 | Filter 1/4" (2 micron) | | 27 | 4214-408-02 | Threaded coupling, 1-1/2" with gasket (full port) | 1.1 | 2401-504 | Water tank outlet ball valve, 3/4" | | | 4214-999-02 | Coupling gasket | 72 | 8710-98501 | Clamp fitting, 1-1/2" FNPT | | 28 | 2000-010 | Slave regulator, 1-1/2" (non-relieving) (1-outlet system) | | 8710-98508 | Clamp fitting, 1-1/2" hose barb | | | 2000-011 | Slave regulator, 2" (non-relieving) (2-outlet system) | | 8710-923015 | Tri-clamp (spring loaded) | | 28 | 5010-060-03 | Lid, 24" | | 8710-98503 | Tri-clamp o-ring | | 30 | 5011-065 | Drop-in screen, 24" (3/16" mesh) | 73 | 8200-000-51 | Blast hose adapter, 1-1/2" x 3 ft (See Sections 5.12 & 5.24) | | 31 | 7090-000 | Rubber screen trim | 74 | 2301-903-90 | Stainer, 3/8" | | 32 | 8200-000-71 | Injection Module (See Section 9.10) | 75 | 8200-000-66 | Amphiblast air reservoir | | | 8200-000-78 | Dual Injection Module (See Section 9.10(a)) | 76 | 2497-706 | Grit suppression valve, 1" | | 33 | 8200-000-11 | Spray nozzle | 17 | 8408-000-235 | Document holding tube | | | 8200-000-82 | Dual Injection Spray Nozzle | | 7200-335 | Amphiblast M operation and maintenance manual | | 봈 | 7000-001-18 | Handway gasket 6" x 8" (SureFit") | | 8200-000-55 | Amphiblast TM setup checklist (pneumatic controls) | | 32 | 2013-402 | Dust eliminator, 1/4" | 78 | 7090-001 | Rubber trim | | 36 | 4205-108 | Swivel Insert, 1-1/2" with gasket | 79 | 8408-000-217 | Blowdown restrictor, 1/2" | | | 4205-108-99 | Insert gasket | 80 | 8200-000-77 | Check valve, 1/4" (Washdown Spray) | | 37 | 4235-008 | Hose clamp, double bolt 1-1/2" | 81 | 2401-502 | Snubber tank drain ball valve, 1/4" (6.5cf 2-outlet) | | 38 | 4102-008 | | 82 | 8200-000-84 | Washdown onfice, dual injection module | | 38 | 7119-002 | Safety pin, airfolast hose coupling | 83 | | | | | | | | | | ### 9.1(b) AmphiBlastTM 4.5 (1-Outlet) Pneumatic Control System (Left Side) ### 9.1(c) AmphiBlastTM 4.5 (1-Outlet) Pneumatic Control System (Right Side) ### 9.1(d) AmphiBlastTM 4.5 Pneumatic (1-Outlet) Panel Diagram (Back View) ### 9.1(e) AmphiBlastTM Pneumatic Control System Parts List | E. | PART NUMBER | DESCRIPTION | TEM | PARTNUMBER | DESCRIPTION | |-----|---------------|--|-----|--------------|---| | _ | 8201-040-00AP | Pressure vessel, 4.5 cu.ft. 1-outlet (150 psi) Painted | 40 | 8/10-98/78 | Hose whip check (safety cable) | | | 8202-060-00AP | Pressure vessel, 6.5 cu.ft. 2-outlet (150 psi) Painted | 41 | 7031-999-02 | Warning decal kit | | N | 4211-108 | Crowfoot, 1-1/2" 4-lug (1-outlet system) | 42 | 4224-300-02 | Male quick connect, 1/4" | | | 4211-109 | Crowfoot, 2" 4-lug (2-outlet system) | 43 | 4224-301-02 | Female quick connect, 1/4" | | 3 | 4211-999 | Crowfoot gasket | 44 | 2001-011 | Blast pressure regulator | | 67 | 2401-508 | Air inlet ball valve, 1-1/2" (1-outlet system) | 45 | 8710-40007A | Inlet pressure gauge 0-160 psi | | | 2401-509 | Air inlet ball valve, 2" (2-outlet system) | 46 | 8200-000-26 | Wash down pressure regulator 0-100 psi | | 4 | 2401-504 | Blowdown ball valve, 1/2* | 47 | 8200-000-17 | Mode selector switch | | rs. | 2100-010 | Popup head | 48 | 2229-301 | Water on/off palm button control valve (See Section 9.12) | | 9 | 2100-011 | Popup gasket | 49 | 8710-40007A | Blast pressure gauge 0-160 psi | | 7 | 8221-030-00DP | Moisture separator 400 CFM (1-outlet system) | 20 | 2006-002 | Water differential pressure regulator | | | 8202-080-00DP | | 51 | 8200-000-12 | Water differential pressure gauge 0-30 psi | | œ | 2401-502 | Drain ball valve, 1/4* | 25 | 8200-000-08 | Water control valve (See Section 9.7) | | o | 2123-108L | Automatic Air Valve (See Section 9.5) | 53 | 8200-000-28 | Check valve, 1/4" (Blast Spray) | | 9 | 4104-XXX-XX | Blast hose assembly (specify size) | 25 | 2401-907 | Abrasive shut-off valve | | = | 2000-XXX | Blast nozzle (specify size) | 55 | 8201-040-00C | Snubber tank (1-outlet system) | | 12 | 2263-002 | G2 Deadman valve (See Section 9.8) | 10 | 8202-060-00C | Snubber tank (2-outlet system) | | 13 | 2401-508 | Choke ball valve, 1-1/2" | 99 | 2401-502 | Water pump priming ball valve, 1/4" | | 14 | 2152-108D | | 25 | 8200-000-19 | Water tank 80 gallon (1-outlet system) | | | 2152-008D | Thompson® Valve II, 1-1/2" TC w/diverter plate (See Section 9.4) | | 8200-000-42 | Water tank 165 gallon (2-outlet system) | | 15 | 4100-501-02 | Twinline hose assembly with ACO, 55 ft. | 28 | 2210-002 | Water pump | | | 4100-701-02 | Twinline hose assembly with ACO, 110 ft | 28 | 8200-000-152 | Strainer w/ clear housing, 3/4" (200 mesh) | | 16 | 4224-301-02 | Female quick connect, 1/4" | 9 | 2401-502 | Water pump air supply ball valve, 1/4" | | 17 | 4224-300-02 | Male quick connect, 1/4" | 61 | 3014-008 | Plug. 1-1/2* | | 18 | 4224-300-02 | Male quick connect, 1/4" | 62 | 2025-010 | Abrasive cutoff valve | | 19 | 4224-301-02 | Female quick connect, 1/4" | 63 | 2401-505 | Drain ball valve, 3/4" | | 20 | 2229-000 | Pneumatic control valve (See Section 9.6) | 64 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 53 | 2014-300 | Breather vent, 1/8" | 65 | 8710-98502 | Clamp fitting, 1-1/4* MNPT | | 22 | 7000-001-11 | Handway
assembly, 6" x 8" with gasket | | 8710-923015 | Tri-clamp (spring loaded) | | 53 | 2302-204-05 | Air filter, 1/2" (5 micron) | | 8/10-98503 | In-clamp o-ring | | 75 | - | Pressure vessel nameplate | 99 | 8200-000-37 | Water pump air supply pressure gauge 0-60 psi | | 53 | 4215-XXX | Nozzle holder (specify size) | 67 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 98 | 4213-XXX | | 88 | 8710-98578 | Filter 1/4" (2 micron) | | 27 | 4214-408-02 | Threaded coupling, 1-1/2" with gasket (full port) | 71 | 2401-504 | Water tank outlet ball valve, 3/4" | | | 4214-999-02 | Coupling gasket | 72 | 8710-98501 | Clamp fitting, 1-1/2" FNPT | | 28 | 2000-010 | Slave regulator, 1-1/2" (non-relieving) (1-outlet system) | | 8710-98508 | Clamp fitting, 1-1/2" hose barb | | | 2000-011 | Slave regulator, 2" (non-relieving) (2-outlet system) | | 8710-923015 | Tri-clamp (spring loaded) | | 58 | 5010-060-03 | Lid, 24" | | 8710-98503 | Tri-clamp o-ring | | 8 | 5011-065 | Drop-in screen, 24" (3/16" mesh) | 73 | 8200-000-51 | Blast hose adapter, 1-1/2" x 3 ft (See Sections 5.12 & 5.24) | | 31 | 7090-000 | Rubber screen trim | 74 | 2301-903-90 | Stainer, 3/8" | | 32 | 8200-000-71 | Injection Module (See Section 9.10) | 75 | 8200-000-66 | Amphiblast air reservoir | | | 8200-000-78 | Dual Injection Module (See Section 9.10(a)) | 76 | 2497-706 | Grit suppression valve, 1" | | 33 | 8200-000-11 | Spray nozzle | 77 | 8408-000-235 | Document holding tube | | | 8200-000-82 | Dual Injection Spray Nozzle | | 7200-335 | Amphiblast [™] operation and maintenance manual | | 봈 | 7000-001-18 | Handway gasket 6" x 8" (SureFit**) | | 8200-000-55 | Amphiblast TM setup checklist (pneumatic controls) | | 35 | 2013-402 | Dust eliminator, 1/4" | 78 | 7090-001 | Rubbertrim | | 36 | 4205-108 | Swivel Insert, 1-1/2" with gasket | 79 | 8408-000-217 | Blowdown restrictor, 1/2* | | | 4205-108-99 | Insert gasket | 80 | 8200-000-77 | Check valve, 1/4" (Washdown Spray) | | 37 | 4235-008 | Hose clamp, double bolt 1-1/2" | 81 | 2401-502 | Snubber tank drain ball valve, 1/4" (6.5cf 2-outlet) | | 38 | 4102-008 | Air hose 1-1/2" | 82 | 8200-000-84 | Washdown onfice, dual injection module | | 90 | 444 | | 0 | | | ### 9.1(f) AmphiBlastTM 6.5 (2-Outlet) Pneumatic Control System (Front) ### 9.1(g) AmphiBlastTM 6.5 (2-Outlet) Pneumatic Control System (Right Side) ### 9.1(h) AmphiBlastTM 6.5 (2-Outlet) Pneumatic Panel Diagram (Back View) ## 9.2(a) AmphiBlastTM Electric Control System Parts List | l | Т | | | | | |----|-----------------|--|------|-----------------|--| | _ | 8201-040-00AP | Pressure vessel, 4.5 cu.ft. 1-outlet (150 pst) | 40 | 8710-98778 | Hose whip check (safety cable) | | | 8202-060-00AP | Pressure vessel, 6.5 cu.ft. 2-outlet (150 psi) | 14 | 7031-999-02 | Warning decal kit | | 2 | 4211-108 | Crawfoot, 1-1/2" 4-lug (1-outlet system) | 44 | 2001-011 | Blast pressure regulator | | | 4211-109 | Crowfoot, 2" 4-lug (2-outlet system) | 45 | 8710-40007A | Inlet pressure gauge 0-160 psi | | | 4211-999 | Crowfoot gasket | 46 | 8200-000-26 | Wash down pressure regulator 0-100 psi | | 60 | 2401-508 | Air inlet ball valve, 1-1/2" | 47 | 8200-000-17 | Mode selector switch | | | 2401-509 | Air inlet ball valve, 2" | 48 | 2229-301 | Water on/off palm button control valve (See Section 9.12) | | 4 | 2401-504 | Blowdown ball valve, 1/2" | 48 | 8710-40007A | Blast pressure gauge 0-160 psi | | 5 | 2100-010 | Popup head | 20 | 2006-002 | Water differential pressure regulator | | 9 | 2100-011 | Popup gasket | 91 | 8200-000-12 | Water differential pressure gauge 0-30 psi | | 7 | 8221-030-00DP | Moisture separator 400 CFM (1-outlet system) | 52 | 8200-000-09 | Water control valve (See Section 9.7) | | | 8202-060-00DP | Moisture separator 800 CFM (2-outlet system) | 53 | 8200-000-29 | Check Valve, 1/4* (Blast Spray) | | 8 | 2401-502 | | Z | 2401-907 | Abrasive shut-off valve | | 6 | 2123-10BL | Automatic Air Valve (See Section 9.5) | 55 | 8201-040-00C | Snubber tank (1-outlet system) | | 10 | 4104-XXX-XX | Blast hose assembly (specify size) | | 8202-060-00C | Snubber tank (2-outlet system) | | 11 | 5000-XXX | Blast nozzle (specify size) | 99 | 8200-000-44 | Water pump priming ball valve, 1/4" | | 12 | 2263-402-05 | G2 Deadman switch (sealed connector) (See Section 9.9) | 22 | 8200-000-19 | Water lank 80 gallon (1-outlet system) | | 13 | 2401-508 | Choke ball valve, 1-1/2" | | 8200-000-42 | Water tank 165 gallon (2-outlet system) | | 14 | 2152-108D | Thompson® Valve II, 1-1/2* PU w/diverter plate (See Section 9.4) | 28 | 2210-002 | Water pump | | | 2152-00BD | Thompson® Valve II, 1-1/2" TC w/diverter plate (See Section 9.4) | 28 | 8200-000-152 | Strainer w/ clear housing, 3/4" (200 mesh) | | 15 | 7075-055-03 | 1.92 | 9 | 2401-502 | Water pump air supply ball valve, 1/4* | | | 7075-110-03 | Extension cord with ACO switch, 110 ft (sealed connectors) | 61 | 3014-008 | Plua. 1-1/2" | | 16 | 7109-300-02 | Sealed electric connector, 3-prong female | 62 | 2025-100-02 | Abrasive cutoff switch | | 17 | 7109-301-02 | | 63 | 2401-505 | Drain ball valve, 3/4" | | 18 | 7109-301-02 | Sealed electric plug. 3-prong male | 25 | See Section 9.8 | Electric control valive | | 19 | 7109-300-02 | Sealed electric connector, 3-prong female | 92 | 8710-98502 | Clamp fitting, 1-1/4" MNPT | | 20 | See Section 9.6 | Electric control valve | | 8710-923015 | Tri-clamp (spring loaded) | | 21 | 2014-300 | Breather vent, 1/8" | 85 | 8710-98503 | Tri-clamp o-ring | | 22 | 7000-001-11 | Handway assembly, 6" x 8" with gasket | 99 | 8200-000-37 | Water pump air supply pressure gauge 0-60 psi | | 23 | 2302-204-05 | Air filter, 1/2" (5 micron) | 67 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 24 | - | Pressure vessel nameplate | 89 | 8710-98578 | Filter 1/4" (2 micron) | | 52 | 4215-XXX | Nozzle holder (specify size) | 69 | 8200-000-27 | Junction box with coils, 1 outlet 12 voit D.C. | | 26 | 4213-XXX | Blast hose coupling (specify size) | 0000 | 8200-000-41 | Junction box with coils, 2 outlet 12 volt D.C. | | 27 | 4214-408-02 | Threaded coupling, 1-1/2" with gasket (full port) | 7.0 | 7072-012-03 | Power cord, 25 ft with alligator clips (sealed connector) | | 18 | 4214-999-02 | Coupling gasket. | 71 | 2401-504 | Water tank outlet ball valve, 3/4" | | 28 | 2000-010 | Slave regulator, 1-1/2" (non-relieving) (1-outlet system) | 72 | 8710-98501 | Clamp fitting, 1-1/2" FNPT | | | 2000-011 | Slave regulator, 2" (non-relieving) (2-outlet system) | | 8710-98508 | Clamp fitting, 1-1/2" hose barb | | 59 | 5010-060-03 | Lid, 24* | | 8710-923015 | Tri-clamp (spring loaded) | | 30 | 5011-065 | Drop-in screen, 24" (3/16" mesh) | | 8710-98503 | Tri-clamp o-ring | | 31 | 7090-000 | Rubber screen trim | 73 | 8200-000-51 | Blast hose adapter, 1-1/2" x 3 ft (See Sections 5.12 & 5.24) | | 32 | 8200-000-71 | Injection Module (See Section 9.10) | 74 | 2301-903-90 | Strainer, 3/8* | | | 8200-000-78 | Dual Injection Module (See Section 9.10(a)) | 75 | 8200-000-86 | Amphiblast air reservoir | | 33 | 8200-000-11 | Spray nozzle | 76 | 2497-706 | Grit suppression valve, 1" | | | 8200-000-78 | Dual Injection Spray Nozzle | 11 | 8408-000-235 | Document holding tube | | 정 | 7000-001-18 | Handway gasket 6" x 8" (SureFit™) | | 7200-335 | Amphiblast ¹²² operation and maintenance manual | | 35 | 2013-402 | Dust eliminator, 1/4" | | 8200-000-55E | Amphiblast ** setup checklist (electric controls) | | 36 | 4205-108 | Swivel Insert, 1-1/2" with gasket | 78 | 7090-001 | Rubber trim | | | 4205-108-99 | Insert gasket | 18 | 8408-000-217 | Blowdown restrictor, 1/2* | | 37 | 4235-008 | Hose clamp, double bolt 1-1/2* | 80 | 8200-000-17 | Check Valve, 1/4" (Washdown Spray) | | 38 | 4102-008 | Air hose 1-1/2" | 81 | 2401-502 | Snubber tank drain ball valve, 1/4" (6.5cf 2-out) | | 38 | 7110,002 | Cafaty ain airthlast hose counting | 182 | 8200-000-84 | Distribution andian deal interestion mande da | ### 9.2(b) AmphiBlastTM 4.5 (1-Outlet) Electric Control System (Left Side) ### 9.2(c) AmphiBlastTM 4.5 (1-Outlet) Electric Control System (Right Side) ## 9.2(d) AmphiBlastTM 4.5 (1-Outlet) Electric Panel Diagram (Back View) # 9.2(e) AmphiBlastTM Electric Control System Parts List | (150 psi) 40 8710-98778 (150 psi) 41 7011-989-02 (150 psi) 45 8710-98778 (150 psi) 46 8710-10014 (150 psi) 46 8710-10014 (150 psi) 46 8710-10014 (150 psi) 47 8200-000-17 (150 psi) 48 8710-000-17 (150 psi) 49 70 70 70 70 70 70 70 7 | ITEM PART NUMBER | R DESCRIPTION | ITEM | PART NUMBER | DESCRIPTION |
--|------------------|--|------|-----------------|--| | \$200,000,004P Pressure versee, 5 out # 2-outlet (15 psi) 44 7031-999-02 44 7031-999-02 4511-699 200,000-13 45 7031-999-02 4511-699 200,000-13 45 7031-900-23 7031-900-23 | 1 8201-040-00A | | 40 | 8710-98778 | Hose whip check (safety cable) | | 4.211-109 Crowfoot (1-1/2" 4-lug (1-outlet system)) 44 201-100 4.211-109 Crowfoot (2-1/4 4-lug (2-outlet system)) 45 3201-100 4.211-109 Crowfoot (2-1/4) 4-lug (2-outlet system) 46 8710-0000-17 4.211-109 Crowfoot (2-1/4) 4-lug (2-outlet system) 45 8710-0000-17 2.401-509 Ar inte thal wake, 1-1/2" 48 8710-0000-17 48 2.401-509 Ar inte thal wake, 1-1/2" 48 8710-0000-12 48 2.210-011 Popul head Popul head 48 8710-000-12 50 2.210-010 Popul head 48 8710-000-12 50 8700-000-12 50 2.210-010 Popul head 48 8710-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 8700-000-12 50 | 8202-060-00A | 390 | 41 | 7031-999-02 | Warning decal kit | | 4211-109 Crowkoot 2" 4 Jug (2-outlet system) 45 8710-10002A 4211-698 Crowkoot 2" 4 Jug (2-outlet system) 45 8710-10002A 47 8700-1000-28 8401-509 Arr inter ball valve. 1-102" 47 8700-00-17 84 8710-10002A 47 8700-000-18 8221-003-000-17 84 8710-10002A 17 8201-500 17 8201-5 | 2 4211-108 | | 44 | 2001-011 | Blast pressure regulator | | 421-59-98 Active packet 4.51-69-98 200-000-36 4.51-69-98 3201-506 4.51-69-99 4.51-69 | 4211-109 | Crowfoot, 2" 4-lug (2-outlet system) | 45 | 8710-40007A | Inlet pressure gauge 0-160 psi | | 2401-509 Alv inelet ball valve - 1.12** 481 2200-000-17 2401-509 Alv inelet ball valve - 2** 48 220-001-1 2401-509 Alv inelet ball valve - 1/2** 48 8710-001-1 2100-011 Popup head 27 2801-000-2 2100-011 Popup head 2800-000-2 50 2100-011 Popup pead 2800-000-2 50 2100-010 Box-bodown Brain a wife in 12** 2800-000-2 2401-502 Dain ball valve, 1/4* 2800-000-2 2401-503 Choke ball valve, 1/2* 2800-000-2 2401-504 Choke ball valve, 1/2* 2800-000-2 2401-505 Choke ball valve, 1/2* 2800-000-1 2401-506 Choke ball valve, 1/4* 2800-000-1 2401-506 Choke ball valve, 1/4* 2800-000-1 2401-506 Choke ball valve, 1/4* 2800-0000-1< | 4211-999 | Crowfoot gasket | 46 | 8200-000-26 | Wash down pressure regulator 0-100 psi | | 2401-599 Amount bal valve, 12* 2401-599 Amount bal valve, 12* 2401-594 48 \$229-301 2100-011 Populp pasket 2100-011 Populp pasket 2300-200-20 50 2306-500-20 8221-020-000P Moisture separator 800 CFM (2-outlet system) 52 2300-000-12 51 8200-000-12 8201-050-000P Moisture separator 800 CFM (2-outlet system) 53 8200-000-12 52 8200-000-12 8201-050-000P Moisture separator 800 CFM (2-outlet system) 50 8200-000-12 52 8200-000-12 2122-108L Authoratic Amountain Avive (3-outlet system) 50 8200-000-12 52 8200-000-12 2122-108D Thompsone Valve II, 1-112* PU widnerter plate (5ee Section 8-0) 50 8200-000-12 52 8200-000-12 2152-108D Thompsone Valve II, 1-112* PU widnerter plate (5ee Section 8-0) 50 8200-000-12 50 8200-000-12 2152-108D Thompsone Valve II, 1-112* PU widnerter plate (5ee Section 8-0) 50 8200-000-12 50 8200-000-12 2152-108D Thompsone Valve II, 1-112* PU widnerter plate (5ee Section 8-0) 50 8200-000-12 50 8200-000-12 215-208D Thompsone Valve II, 1-112* PU widnerter plate (5ee | 3 2401-508 | Air inlet ball valve, 1-1/2" | 47 | 8200-000-17 | Mode selector switch | | 2401-504 Boundown ball valve, 1/2* 2401-504 48 PT0-L0000A 2100-010 Pegup bread 2700-010 Pegup bread 51 8200-000-12 2100-011 Pegup passed 2700-011 87 200-000-12 51 8200-000-12 2200-020 Molature separator 800 CFM (1-outlet system) 53 8200-000-13 53 8200-000-12 2302-020 Drain ball valve 1/4* 26 25-6tion 8 5) 54 2401-600 56 8201-40-00 56 8201-600-00 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56
2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 2500-00-12 56 | 2401-509 | Air inlet ball valve, 2" | 48 | 2229-301 | Water on/off paim button control valve (See Section 9.12) | | 2000-010 Propup passed 2000-012 2000-012 2000-012 2000-012 2000-010 Propup passed 2000-012 2000-012 2000-012 2000-012 2000-012 2000-002 | 4 2401-504 | Blowdown ball valve, 1/2* | 49 | 8710-40007A | Blast pressure gauge 0-160 psi | | 2200-001 Popula gasket 2200-00-12 2300-000-19 23 | | Popup head | 90 | 2006-002 | Water differential pressure regulator | | R221-002-00P Moisture separator 400 CFM (1-outlet system) 52 8200-000-29 8220-505-00P Moisture separator 400 CFM (1-outlet system) 53 8200-000-29 2401-502 D Janin ball valve (1-dee Section 9.5) 58 8200-000-29 2401-502 D Janin ball valve (see Section 9.5) 58 8200-000-49 2401-502 G Z Deadman switch (seeled connector) (See Section 9.4) 58 8200-000-49 200-XXX Blast hose assembly (specify size) 8200-000-19 58 2152-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2152-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2162-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2162-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2162-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2162-1080 Thompsone (valve II, 1-102* PU widherter plate (See Section 9.4) 58 8200-000-15 2162-1080 Thompsone (valve II, 1-102* Pu with pasket (valve II, 1-102* | | Popup gasket | 51 | 8200-000-12 | Water differential pressure gauge 0-30 psi | | \$200-000-29 Moisture separation 800 CFM (2-outlet system) \$53 8200-000-29 | 7 8221-030-00D | Moisture separator 400 CFM (| 52 | 8200-000-09 | Water control valve (See Section 9.7) | | 2401-502 Drain bate 144" 144" 54 3401-502 56 8201-040-00C 4104-XXX.XX Blast hose a ssembly (specify size) 50 8202-000-44 55 8201-000-4 5000-XXX Blast hose a ssembly (specify size) 8202-000-44 57 8202-000-4 2000-XXX Blast hose a ssembly (specify size) 8202-000-4 50 8202-000-4 2000-XXX Blast hose a ssembly (specify size) 8202-000-4 50 8200-000-4 2152-08D Thompsone Valve II, 1-172* Pu widwelter plate (See Section 9.4) 57 8200-000-1 2210-002 2152-08D Thompsone Valve II, 1-172* Pu widwelter plate (See Section 9.4) 56 8200-000-1 8200-000-1 2152-08D Thompsone Valve II, 1-172* Pu widwelter (See Section 9.4) 56 2210-002 2210-002 2162-001-02 Sealed electric control with ACO switch, 10 ft (sealed connectors) 60 2001-001-1 2001-001-1 2001-002 2001-002 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 2001-002-01-1 | 8202-060-000 | | 53 | 8200-000-29 | Check Valve, 1/4* (Blast Spray) | | 12.108.108. Automate Ar Valve (See Section 9.5) 55 8201-040-00C 4104-XXXXX Blast nozzle (specify size) 500-000-18 500-000-18 5000-XXXX Blast nozzle (specify size) 57 820-000-42 500-000-19 5000-XXXX Blast nozzle (specify size) 57 820-000-42 500-000-19 2401-508 Choke ball valve, 1-1/2* To widwerter plate (See Section 9.4) 57 820-000-42 2162-008D Thompsone? Valve II, 1-1/2** PU widwerter plate (See Section 9.4) 58 8200-000-18 2162-008D Thompsone? Valve II, 1-1/2** PU widwerter plate (See Section 9.4) 59 8200-000-18 2162-008D Thompsone? Valve II, 1-1/2** PU widwerter plate (See Section 9.4) 59 8200-000-18 2162-009D Thompsone? Valve II, 1-1/2** PU widwerter plate (See Section 9.4) 59 8200-000-12 2162-009D Thompsone? Valve III, 1-1/2** PU widwerter plate (See Section 9.4) 59 8200-000-12 2102-300-02 Sealed electric pour deciric plate (See Section 9.4) 56 8200-000-12 2103-300-02 Sealed electric plate (See Section 9.4) 50 8200-000-12 2004-200-12 Sealed electric plate (See Section 9.4) 50 8200-000-12 2005-00-11 Handway ass | 8 2401-502 | Drain ball valve, 1/4" | 35 | 2401-907 | Abrasive shut-off valve | | 104.XXX.XX Blast note essembly (specify size) 56 8202-080-00C 2000-XXX Blast notate (specify size) 56 8200-00C-44 2000-XXX Blast notate (specify size) 57 8200-00C-42 2000-XXX 2363-402-06 32 02-2080-00C 3200-500C-42 3200-500C-42 3200-500C-43 3200-50C-42 3200-50C- | | - | 99 | 8201-040-00C | Snubber tank (1-outlet system) | | 2000-XXX Blast nozzle (specify size) \$600-XXX 8200-000-44 2263-402-06 GZ Deadman syltch (sealed connector) (See Section 9.4) \$7 \$600-000-19 2263-402-06 Choke ball valve, 1-1/2* PU widverter plate (See Section 9.4) \$61 \$200-000-15 2152-108D Thompson® Valve II, 1-1/2* PU widverter plate (See Section 9.4) \$6 \$200-000-15 7075-10-03 Extension cord with ACO switch, 56 it (sealed connectors) \$61 \$200-000-15 7075-10-03 Extension cord with ACO switch, 10 it (sealed connectors) \$61 \$200-000-15 7075-10-03 Extension cord with ACO switch, 10 it (sealed connectors) \$61 \$200-000-15 7075-10-03 Extension cord with ACO switch, 10 it (sealed one-circ connector, 3-prorg female \$61 \$200-000-15 7109-300-02 Sealed electric plug, 3-prorg male \$61 \$610-000-15 7109-300-02 Sealed electric plug, 3-prorg male \$61 \$610-000-15 7109-300-02 Sealed electric plug, 3-prorg male \$61 \$610-000-15 7109-300-03 Breather vent, 16 \$61 \$610-000-15 7000-011 Handway assembly, 6'' x8' with gaske | | Blast hose assembly (specify | | 8202-060-00C | Snubber tank (2-outlet system) | | 2008-402-66 Cito Deadmans with (sealed connector) (See Section 9.4) 57 8200-000-12 2152-108D Thorapson® Valve II, 1-1/2* TC widiverter plate (See Section 9.4) 58 2210-000-12 2152-008D Thorapson® Valve III, 1-1/2* TC widiverter plate (See Section 9.4) 59 8200-000-15 2152-008D Thorapson® Valve III, 1-1/2* TC widiverter plate (See Section 9.4) 59 8200-000-15 2152-008D Thorapson® Valve III, 1-1/2* TC widiverter plate (See Section 9.4) 50 8200-000-15 2152-008D Total Solution on ord with ACO swidth, 10ft (realed connectors) 61 32401-500-6 2102-301-02 Sealed electric plug 3-prong male 62 2025-100-0 2108-301-02 Sealed electric plug 3-prong male 63 8205-100-0 2108-301-03 Sealed electric plug 3-prong male 63 8710-08850 2108-301-03 Sealed electric plug 3-prong male 63 8710-08850 2108-301-03 Sealed electric plug 3-prong male 63 8710-08850 2108-301-03 Sealed electric plug 3-prong male 8710-08850 8710-08850 2008-301-04 See Section 9 (See Section 9 (See Section 9 | 1 5000-XXX | Blast nozzle (specify size) | 99 | 8200-000-44 | Water pump priming ball valve, 1/4" | | 201-508 Choke ball valve 1-1/2* 2000-000-42 8200-000-42 2152-108D Throspoon's Valve II, 1-1/2* To widdwetter plate (See Section 9.4) 58 2210-0002 2152-008D Throspoon's Valve II, 1-1/2* To widdwetter plate (See Section 9.4)
59 8200-000-02 7075-055-03 Extension cord with ACO switch, 10 ft (sealed connectors) 60 2401-502 7108-301-02 Sealed electric plug, 3-prong male 62 2025-100-02 7108-301-02 Sealed electric plug, 3-prong male 63 2401-506 7108-301-02 Sealed electric plug, 3-prong male 65 8710-8850 7108-301-02 Sealed electric plug, 3-prong male 67 8710-8850 7108-301-02 Sealed electric plug, 3-prong male 8710-8850 8710-8850 700-001-02 Sealed electric plug, 3-prong male 8710-8850 8710-8850 8214-300 | 27 | G2 Deadman switch (sealed connector) (See Section 9.9) | 25 | 8200-000-19 | Water tank 80 gallon (1-outlet system) | | 2152-108D Thompson® Valve II, 1-1/2" PU widwerter plate (See Section 9.4) 58 2210-002 2152-008D Thompson® Valve II, 1-1/2" C widwerter plate (See Section 9.4) 59 8200-000-152 7075-015-03 Extension cord with ACO swikeh, 110 ft (sealed connectors) 61 361-008 7109-300-02 Sealed electric connector, 3-prong female 62 2005-100-02 7109-300-02 Sealed electric plug, 3-prong male 63 8710-98502 7109-301-02 Sealed electric plug, 3-prong male 64 See Section 8 6 7109-301-02 Sealed electric plug, 3-prong male 65 8710-98502 7109-301-02 Sealed electric plug, 3-prong male 65 8710-98502 7109-301-02 Sealed electric plug, 3-prong female 65 8710-98502 7109-301-02 Sealed electric plug, 3-prong female 65 8710-98502 7109-301-02 Sealed electric plug, 3-prong female 68 8710-98502 7109-301-02 Sealed electric plug, 3-prong female 68 8710-98502 7109-301-02 Sealed electric plug, 3-prong female 8710-98502 7109-01-02 | | Choke ball valve, 1-1/2" | | 8200-000-42 | Water tank 165 gallon (2-outlet system) | | 2152-008D Thompson® Valve II, 1-1/2" TC wifeverter plate (See Section 9.4) 59 800-000-152 7075-055-03 Extension cord with ACO switch, 156 it (sealed connectors) 60 2401-502 7075-056-03 Extension cord with ACO switch, 156 it (sealed connectors) 61 3014-008 7108-300-02 Sealed electric plug 3-prong male 62 2025-100-02 7108-301-02 Sealed electric connector, 3-prong female 63 2401-505 7108-301-02 Sealed electric connector, 3-prong female 64 See Section 8 7108-301-02 Sealed electric connector, 3-prong female 65 8710-88602 7108-301-02 Sealed electric connector, 3-prong female 65 8710-88602 7108-301-02 Sealed electric connector, 3-prong female 65 8710-88602 7108-301-02 Sealed electric connector, 3-prong female 67 8710-88602 7000-001-11 Handway assembling, 7-x with gasket (full port) 67 8710-88678 4214-408-02 Coupling gasket (full port) 70 70 707-01-203 4214-408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 | | Thompson® Valve II, 1-1/2" PU widiverter plate (See Section 9.4) | 28 | 2210-002 | Water pump | | 7075-055-03 Extension cord with ACO switch, 55 it (sealed connectors) 60 2401-592 7075-10403 Extension cord with ACO switch, 10 it (sealed connectors) 51 3014-008 7108-300-02 Sealed electric connector, 3-prong female 52 2025-100-02 7108-301-02 Sealed electric plug, 3-prong male 64 See Section 9.6 7108-301-02 Sealed electric plug, 3-prong male 65 8710-98602 7108-301-02 Sealed electric plug, 3-prong male 65 8710-98602 7108-300-02 Sealed electric plug, 3-prong male 65 8710-98602 7108-300-02 Sealed electric connector, 3-prong female 65 8710-98602 See Section 9.6 Electric control valve 8710-98602 8710-98602 See Section 9.6 Electric control valve 8710-98603 8710-98603 Z00-001-11 Handway assembly, 6" x 8" vith gasket (full port) 77 8200-000-000-000-000-000-000-000-000-000 | 2152-00BD | Thompson® Valve II, 1-1/2" TC w/diverter plate (See Section 9.4) | 69 | 8200-000-152 | Strainer w/ clear housing, 3/4" (200 mesh) | | 7075-110-03 Extension cord with ACO switch, 110 ft (sealed connectors) 61 3014-008 7109-300-02 Sealed electric plug, 3-prong male 62 2025-100-02 7109-300-02 Sealed electric plug, 3-prong male 63 3401-565 7109-300-02 Sealed electric plug, 3-prong male 65 8710-88502 7109-300-02 Sealed electric plug, 3-prong male 65 8710-88503 7109-300-02 Sealed electric plug, 3-prong male 8710-88503 8 8710-88503 8710-88503 700-001-11 Handway assembly, 6°x 8° with gasket 65 8710-88503 700-001-11 Handway assembly, 6°x 8° with gasket 68 8710-88503 4213-XXX Blast hose coupling (specify size) 70 7072-012-03 4214-408-02 Threaded coupling (specify size) 70 7072-012-03 4214-408-02 Threaded coupling (specify size) 70 7072-012-03 4214-408-02 Threaded coupling (seekly size) 70 7072-012-03 4214-408-03 Lid, 24° 8200-000 70 8210-000-00-01 8200 | | Extension cord with ACO switch, 55 ft (sealed connectors) | 9 | 2401-502 | Water pump air supply ball valve, 1/4* | | 7109-300-02 Sealed electric connector, 3-prong female 62 2025-100-02 7109-301-02 Sealed electric plug, 3-prong male 63 2401-565 7109-301-02 Sealed electric plug, 3-prong male 64 See Section 9.6 7109-301-02 Sealed electric plug, 3-prong male 65 8710-88602 7109-301-02 Sealed electric connector, 3-prong male 65 8710-88602 7109-300-02 Sealed electric connector, 3-prong male 68 8710-88602 See Section 9.6 Electric control valve 8710-88602 8710-88603 2014-300 Breather versel nameplate 65 8710-88603 4215-XXX Blast hose coupling (speechfy size) 68 8710-88603 4215-XXX Blast hose coupling (speechfy size) 68 8710-88678 4214-408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 700-000-1 4214-408-02 Threaded coupling, 1-1/2" (non-relieving) (1-outlet system) 71 8710-88508 5000-011 Slave regulator, 2" (316" mest) 72 8710-8250 5011-065 Droph recen, 2" (316" mest) | 7075-110-03 | Extension cord with ACO switch, 110 ft (sealed connectors) | 61 | 3014-008 | Plug, 1-1/2" | | 7109-301-02 Sealed electric plug. 3-prong male 63 2401-505 7109-301-02 Sealed electric plug. 3-prong male 64 See Section 9.6 7109-300-02 Sealed electric connector, 3-prong male 65 8710-98502 7109-300-02 Sealed electric connector, 3-prong female 66 8710-98503 Sol 4-300 Breather vent, 148* 8710-98503 8710-98503 200-001-11 Handway assembly, 6" x 8" with gasket 8710-98503 8710-98503 200-001-12 Handway assembly, 6" x 8" with gasket (full port) 70 7072-012-03 4215-XXX Nozzle holder (specify size) 88 200-000-27 8200-000-27 4215-XXX Blast hose coupling (specify size) 70 7072-012-03 4214-408-02 Threaded coupling, 1-1/2" (non-relieving) (1-outlet system) 71 8710-98501 4214-408-02 Threaded coupling gasket 10.34 8710-98501 8710-98501 2000-01 Slave regulator, 1-1/2" (non-relieving) (2-outlet system) 71 8710-98503 5010-060-03 Lid, 24" 8200-000-27 8200-000-27 8010-000-1 | | Sealed electric connector, 3-prong female | 62 | 2025-100-02 | Abrasive cutoff switch | | 7109-301-02 Sealed electric plug 3-prong famale 64 See Section 9.6 7109-301-02 Sealed electric control valve 8710-88502 8710-88503 See Section 9.6 Electric control valve 8710-88503 8710-88503 Z014-300 Breather vent. 1/8* 8710-88503 8710-88503 Z002-204-05 Air filter, 1/2* (5 micron) 8710-88503 8710-88503 Z002-204-05 Air filter, 1/2* (5 micron) 8710-88503 8710-88503 Z002-204-05 Air filter, 1/2* (5 micron) 88 8710-88503 4215-XXX Nozzle holder (specify size) 67 2229-000 4214-08-02 Threaded coupling, 1-1/2* with gasket (full port) 70 702-012-03 4214-08-02 Threaded coupling, 1-1/2* with gasket (full port) 70 702-000-04 4214-08-02 Threaded coupling, 1-1/2* with gasket (full port) 70 702-012-03 4214-08-03 Lid, 24* Save regulator, 2* (non-relieving) (1-outlet system) 71 2401-504 5011-085 Drop-in screen, tim 8200-000 72 8200-000-51 8200-000-78 | 7 7109-301-02 | 1200 | 63 | 2401-505 | Drain ball valve, 3/4" | | 7109-300-02 Sealed electric connector, 3-prong female 65 8710-98502 See Section 9.6 Electric control valve 8710-98503 8710-98503 2014-300 Breather vent, 10°C 8710-98503 8710-98503 7000-001-11 Handway assembly, 6°x 6° with gasket 66 8200-000-37 7000-001-11 Handway assembly, 6°x 6° with gasket 8710-98578 8710-98578 4215-XXX Nozzle holder (specify size) 68 8710-98578 4215-XXX Nozzle holder (specify size) 68 8710-98578 4214-08-02 Threaded coupling gasket (full port) 70 7072-012-03 4214-08-02 Threaded coupling gasket (full port) 70 7072-012-03 4214-08-03 Threaded coupling gasket (full port) 70 7072-012-03 4214-08-03 Save regulator, 1-1/2° with gasket (full port) 71 2401-504 2000-010 Slave regulator, 1-1/2° mest) 71 8710-88508 5011-060-03 Lid, 24° 3716° mest) 8710-88508 5010-060-03 Lid, 24° 3716° Section 9.10(a) 77 849 | | | 2 | See Section 9.6 | Electric control valve | | See Section 9.6 Electric control valve 8710-92301S 2014-300 Breather vent, 18° 8710-98503 2014-300 Breather vent, 18° 8710-98503 2000-001-1 Handway assembly 6" x 8" with gasket 8200-000-37 2302-204-05 Air filter, 1/2" (5 miscron) 68 8710-98508 4215-XXX Nozzle holder (specify size) 69 8200-000-41 4214-08-02 Threaded coupling, 1-1/2" with gasket (full port) 70 7072-012-03 4214-498-02 Threaded coupling, 1-1/2" (non-relieving) (1-outlet system) 72 8200-000-41 2000-010 Slave regulator, 2" (non-relieving) (2-outlet system) 71 2401-504 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 71 2401-504 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 71 8710-98508 5011-065 Drop-in screen, 24" (3/16" mest) 72 8710-98508 5010-060-03 Lid, 24" 72 8200-000-51 8200-000-11 Spray nozzle 8200-000-71 72 8200-000-51 8200-000-13 | | | 65 | 8710-98502 | Clamp fitting, 1-1/4" MNPT | | 2014-300 Breather vent, 1/8" 8710-88503 7000-001-11 Handway assembly, 6" x 8" with gasket 68 8200-000-37 2302-204-05 Air filter, 1/2" (5 micron) 68 8200-000-37 2302-204-05 Air filter, 1/2" (5 micron) 68 8710-86578 4215-XXX Blast hose coupling (specify size) 69 8710-86578 4214-099-02 Threaded coupling (specify size) 70 7072-012-03 4214-099-02 Coupling gasket 71 2401-060-13 4214-099-02 Coupling gasket 71 2401-060-03 4214-099-02 Coupling gasket 71 2401-504 4214-099-02 Coupling gasket 71 2401-504 4200-011 Slave regulator, 1-1/2" (mon-elleving) (1-outlet system) 72 8710-98501 5010-060-13 Lid, 24 7316" mesh) 77 8201-504 5010-060-10 Slave regulator, 2" (mon-elleving) (2-outlet system) 75 8201-005-00 5010-060-13 Lid, 24 74 2301-905-00 8200-000-14 Spray nozzle 8710-905- | | -26 | | 8710-923015 | Tri-clamp (spring loaded) | | 7000-001-11 Handway assembly, 6" x 8" with gasket 66
8200-000-37 2302-204-05 Auf filter, 1/2" (5 miscon) 67 2229-000 4215-XXX Nozzle holder (specify size) 68 8710-88578 4213-XXX Blast hose coupling (specify size) 69 8200-000-27 4214-408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 7072-012-03 4214-408-03 Threaded coupling, 1-1/2" with gasket (full port) 70 707-012-03 4214-408-02 Coupling gasket 71 2401-504 4214-408-03 Lid, 24" 8710-98501 8710-98501 4214-408-03 Lid, 24" 8710-98501 8710-98501 5010-060-03 Lid, 24" 8710-98501 8710-98503 5010-060-03 Lid, 24" 8710-98503 8710-98508 5010-060-03 Lid, 24" 8710-98503 8710-98503 8200-000-1 Broop-in screen, time Section 9.10(a) 73 8200-000-51 8200-000-1 Broop-in screen, time Broop-in screen broop-in screen broop-in screen broop-in screen broop-in screen broop-in screen broop-in scr | | Breather vent, 1/8" | 8 | 8710-98503 | Tri-clamp o-ring | | 2302-204-05 Air filter, 1/2" (5 milcron) 67 2228-000 ———————————————————————————————————— | | | 99 | 8200-000-37 | Water pump air supply pressure gauge 0-60 psi | | —— Pressure vessel nameplate 68 8710-88578 4215-XXX Nozzle holder (specify size) 69 8710-88578 4213-XXX Blast hose coupling (specify size) 8200-000-27 4214-408-02 Threaded coupling (specify size) 70 7072-012-03 4214-498-02 Coupling gasket 71 2401-504 2000-010 Slave regulator, 1-1/2" (non-relieving) (1-outlet system) 71 2401-504 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 8710-98501 8710-98501 5010-06-03 Lid, 24" 8710-98501 8710-98501 5010-06-03 Lid, 24" 8710-98501 5010-06-03 Lid, 24" 8710-98501 5010-06-03 Plop-in screen trim 8200-000-51 8200-000-71 Injection Module (See Section 9.10(a)) 73 8200-000-51 8200-000-72 Bural Injection Spray Nozzle 76 2497-706 8200-000-73 Bural Injection Spray Nozzle 77 8408-000-235 7000-01-18 Handway gasket (* x 8" (SureFit***) 78 7000-001 | | | 67 | 2229-000 | Pneumatic control valve (See Section 9.6) | | 4215-XXX Nozzle holder (specify size) 69 8200-000-27 4213-XXX Blast hose coupling (specify size) 8200-000-41 4214-408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 7072-012-03 4214-498-02 Coupling gasket 71 2401-504 2000-010 Slave regulator, 1-1/2" (non-relieving) (1-outlet system) 77 8710-98501 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 8710-98501 8710-98501 5010-060-03 Lid, 24" 8710-98501 8710-98501 5011-065 Drophins careen 24" (3/16" mesh) 77 8710-98501 5010-060-03 Rubber screen trim 8200-000-51 74 2301-900-51 8200-000-1 Spray nozzle 74 2301-900-51 8200-000-1 Spray nozzle 76 2497-706 8200-000-1 Swivel Insert, 1-1/2" with gasket 78 7000-001 4205-108 Insert gasket 78 8408-000-235 4205-108 Insert gasket 78 8408-000-235 4205-008 Hos | | Pressure vessel nameplate | 68 | 8710-98578 | Fitter 1/4" (2 micron) | | 4213-XXX Blast hose coupling (specify size) 8200-000-41 4214-408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 7072-012-03 4214-999-02 Coupling gasket 2000-011 Stave regulator, 1-1/2" (non-relieving) (1-outlet system) 71 2401-504 2000-011 Stave regulator, 2" (non-relieving) (2-outlet system) 8710-98501 8710-98501 2000-011 Stave regulator, 2" (non-relieving) (2-outlet system) 8710-98501 8710-98501 5010-060-03 Lid, 24" 8710-98501 8710-98501 5010-060-03 Lid, 24" 8710-98503 8710-98503 5010-060-03 Lid, 24" 8710-98503 8710-98503 7090-000 Rubber screen trim 8200-000-51 72 8200-000-51 8200-000-71 Injection Module (See Section 9.10) 75 8200-000-66 76 8200-000-78 Dual Injection Spray Nozzle 8200-000-7 76 2497-706 8200-000-79 Handway gasket 6" x 8" (SureFit***) 8200-000-7 78 7000-01 4205-108 Swivel Insert, 1-1/2" with gasket 78 7000 | | Nozzle holder (specify size) | 69 | 8200-000-27 | Junction box with coils, 1 outlet 12 volt D.C. | | 4214.408-02 Threaded coupling, 1-1/2" with gasket (full port) 70 7072-012-03 4214.498-02 Coupling gasket 2000-010 Slave regulator, 1-1/2" (non-relieving) (1-outlet system) 71 2401-504 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 8710-98508 8710-98508 5010-060-03 Lid, 24" 8710-98508 8710-98508 5011-065 Drop-in screen, 24" (3/16" mesh) 8710-98508 5010-060-07 Rubber screen trim 8710-98503 7090-000 Rubber screen trim 8200-000-51 8200-000-71 Injection Module (See Section 9.10) 75 8200-000-78 Dual Injection Module (See Section 9.10) 75 8200-000-79 Injection Module (See Section 9.10) 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit***) 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit****) 800-000-335 7001-340 Swivel Insert, 1-1/2" with gasket 78 7000-001 4205-108 Wivel Insert, 1-1/2" 80 8200-000-77 4102-008 Air hose cla | | Blast hose coupling (specify size) | | 8200-000-41 | Junction box with coils, 2 outlet 12 volt D.C. | | 4214-999-02 Coupling gasket 71 2401-504 2000-010 Stave regulator, 1-1/2" (non-relieving) (1-outlet system) 72 8710-98501 2000-011 Stave regulator, 2" (non-relieving) (2-outlet system) 8710-98508 8710-98508 5010-060-03 Lid, 24" 8710-98503 8710-98503 5011-065 Drop-in screen trim 8710-98503 73 7090-000 Rubber screen trim 8200-000-51 74 2301-903-90 8200-000-71 Injection Module (See Section 9.10) 75 8200-000-66 8200-000-78 Dual Injection Spray Nozzle 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit***) 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit***) 8200-000-55E 72 700-01-18 Handway gasket 78 7000-001 4205-108 Swivel Insert, 1-1/2" with gasket 78 7000-001 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose clamp, double bolt 1-1/2" 81 2401-502 | 38 | ng, 1-1/2" with | 70 | 7072-012-03 | Power cord, 25 ft with alligator clips (sealed connector) | | 2000-010 Slave regulator, 1-1/2" (non-relieving) (1-outlet system) 72 8710-98501 2000-011 Slave regulator, 2" (non-relieving) (2-outlet system) 8710-98508 5010-060-03 Lid, 24" 8710-98501 5011-065 Drop-in screen trim 8710-98503 7090-000 Rubber screen trim 8710-98503 7090-000-71 Injection Module (See Section 9.10) 74 2301-903-90 8200-000-73 Injection Module (See Section 9.10) 75 8200-000-66 8200-000-74 Injection Module (See Section 9.10) 75 8200-000-66 8200-000-78 Dual Injection Spray Nozzle 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit*") 8200-000-335 7200-335 7000-01-18 Handway gasket 78 7090-001 4205-108 Swivel Insert, 1-1/2" with gasket 78 7090-001 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose clamp, double bolt 1-1/2" 81 2401-502 | | Coupling gasket | 71 | 2401-504 | Water tank outlet ball valve, 3.4" | | 2000-011 Slave regulator, 2" (non-reliewing) (2-outlet system) 8710-88508 5010-060-03 Lid, 24" 8710-88501S 5011-065 Drop-in screen, 24" (3/16" mesh) 8710-88501S 7090-000 Rubber screen trim 8710-88503 7090-000-71 Injection Module (See Section 9.10) 74 2301-903-90 8200-000-78 Dual Injection Module (See Section 9.10) 75 8200-000-66 8200-000-11 Spray nozzle 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit*") 8200-000-55 7000-01-18 Handway gasket 6" x 8" (SureFit*") 8200-000-55 7001-3402 Dust eliminator, 14" 7000-335 7005-108 Swivel Insert, 1-1/2" with gasket 78 7090-001 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose clamp, double bott 1-1/2" 81 2401-502 | | Slave regulator, 1-1/2" (non-relieving) (1-outlet system) | 72 | 8710-98501 | Clamp fitting, 1-1/2" FNPT | | 5010-060-03 Lid, 24" 8710-92301S 5011-065 Drop-in screen, 24" (3/16" mesh) 8710-98503 7090-000 Rubber screen trim 8710-98503 7090-000 Rubber screen trim 8200-000-51 8200-000-78 Dual Injection Module (See Section 9.10(a)) 74 2301-903-90 8200-000-11 Spray nozzle 75 8200-000-66 8200-000-18 Handway gasket 6" x 8" (SureFit*") 76 2497-706 7000-01-18 Handway gasket 6" x 8" (SureFit*") 8200-000-55E 7200-335 2013-402 Dust eliminator, 14" 8200-000-56E 78 7090-001 4205-108 Swivel Insert, 1-1/2" with gasket 78 7090-001 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose clamp, double bott 1-1/2" 81 2401-502 | 1 | Slave regulator, 2" (non-relieving) (2-outlet system) | | 8710-98508 | Clamp fitting, 1-1/2" hose barb | | 5011-065 Drop-in screen, 24" (3/16" mesh) 8710-88503 7090-000 Rubber screen trim 73 8200-000-51 8200-000-71 Injection Module (See Section 9.10(a)) 74 2301-903-90 8200-000-78 Dual Injection Module (See Section 9.10(a)) 75 8200-000-66 8200-000-1 Spray nozzle 76 2497-706 8200-000-18 Handway gasket 6" x 8" (SureFit*") 7000-035 7200-035 7000-01-18 Handway gasket 6" x 8" (SureFit*") 8200-000-51 7200-035 2013-402 Dust eliminator, 14" 8200-000-55E 78 7090-001 4205-108 Swivel Insert, 1-1/2" with gasket 78 7090-001 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose clamp, double bott 1-1/2" 81 2401-502 | | Lld, 24" | | 8710-923015 | Tri-clamp (spring loaded) | | 7090-000 Rubber screen trim 73 8200-000-51 8200-000-71 Injection Module (See Section 9.10) 74 2301-903-90 8200-000-78 Dual Injection Module (See Section 9.10(a)) 75 8200-000-66 8200-000-11 Spray nozzle 76 2497-706 8200-000-78 Dual Injection Spray Nozzle 77 8408-000-235 7000-001-18 Handway gasket 6* x 8* (SureFit***) 8200-000-55E 7200-335 7000-001-18 Handway gasket 6* x 8* (SureFit***) 8200-000-55E 7200-335 2013-402 Dust eliminator, 14* 7200-335 7200-335 4205-108 Swivel Insert, 1-1/2* with gasket 78 7090-001 4205-108-99 Insert gasket 79 8408-000-217 4205-08 Hose clamp, double bolt 1-1/2* 80 8200-000-77 4102-008 Air hose 1-1/2* 81 2401-502 | | Drop-in screen, 24" (3/16" mesh) | | 8710-98503 | Tri-clamp o-ring | | 8200-000-71 Injection Module (See Section 9.10) 8200-000-78 Dual Injection Module (See Section 9.10(a)) 8200-000-11 Spray nozzle 8200-000-13 Spray nozzle 8200-000-78 Dual Injection Spray Nozzle 8200-000-18 Handway gasket 6" x 8" (SureFit*") 77 8408-000-335 78 7090-001 78 7090-001 79 8408-000-217 4205-108 Wivel Insert, 1-1/2" with gasket 4205-108 Owserlanp, double bolt 1-1/2" 80 8200-000-77 81 2401-502 | | | 73 | 8200-000-51 | Blast hose adapter, 1-1/2" x 3 ft (See Sections 5.12 & 5.24) | | 8200-000-78 Dual Injection Module (See Section 9.10(a)) 8200-000-11 Spray nozzle 8200-000-13 Spray nozzle 8200-000-18 Dual Injection Spray Nozzle 77 8408-000-235
77 8408-000-235 77 8408-000-235 78 7000-001 79 8408-000-55E 4205-108 79 8408-000-217 4205-108 Where clamp, double bolt 1-1/2* 80 8200-000-77 81 2401-502 | | Injection Module (See Section 9.10) | 74 | 2301-903-90 | Strainer, 3/8* | | 8200-000-11 Spray nozzle 8200-000-78 Dual Injection Spray Nozzle 8200-000-78 Dual Injection Spray Nozzle 77 8408-000-235 7200-001-18 Handway gasket 6" x 8" (SureFit*") 7200-035 72013-402 Dust eliminator, 14" 8200-000-55E 72013-402 Dust eliminator, 14" 7200-001 7200-001-78 7090-001 7205-108 99 Insert gasket 7205-108-99 Insert gasket 7205-108-99 Insert gasket 7205-008 Hose clamp, double bolt 1-1/2" 80 8200-000-77 7200-001-77 8205-000-77 7200-000-77 80 8200-000-77 72013-000-77 80 8200-000-77 | | Dual Injection Module (See Section 9.10(a)) | 75 | 8200-000-66 | Amphiblast air reservoir | | 8200-000-78 Dual Injection Spray Nozzle 77 8408-000-235 7000-001-18 Handway gasket 6" x 8" (SureFit*") 7200-035 72013-402 Dust eliminator, 14" 8200-000-55E 4205-108 Swivel Insert, 1-1/2" with gasket 4205-108-99 Insert gasket 4205-108-99 Insert gasket 4205-008 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose 1-1/2" 81 2401-502 | | | 76 | 2497-706 | Grit suppression valve, 1" | | 7200-001-18 Handway gasket 6" x 8" (SureFit*") 7200-001-18 8200-000-55E 8200-000-55E 8200-000-55E 7095-108 Swivel Insert, 1-1/2" with gasket 7205-108-99 Insert gasket 4205-108 Hose clamp, double bolt 1-1/2" 80 8200-000-77 81 2401-502 | | | 77 | 8408-000-235 | Document holding tube | | 2013-402 Dust eliminator, 1/4" 8200-000-55E 78 7090-001 79 8400-001 79 8400-001 79 8400-001 79 8400-001 79 8400-001 79 8400-001 79 8400-000-217 79 7090-001 79 8400-000-217 79 7090-000-217 79 7090-000-217 79 7090-000-217 79 700-000-217 79 700-000-217 79 700-000-217 79 700-000-217 79 700-000-217 700-000 Air hose clamp, double bolt 1-1/2" 80 8200-000-77 79 700-000 77 700-000 Air hose 1-1/2" 81 2401-502 | | Handway gasket 6" x 8" (SureFit "") | | 7200-335 | Amphiblast " operation and maintenance manual | | 4205-108 Swivel Insert, 1-1/2" with gasket 78 7090-001 79 8408-000-217 4205-108-99 Insert gasket 79 8408-000-217 4235-008 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose 1-1/2" 81 2401-502 | | Dust eliminator, 1/4" | | 8200-000-55E | Amphiblast TM setup checklist (electric controls) | | 4235-108-99 Insert gasket 79 8408-000-217 4235-008 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose 1-1/2" 81 2401-502 | | Swivel Insert, 1-1/2" with gasket | 78 | 7090-001 | Rubber trim | | 4235-008 Hose clamp, double bolt 1-1/2" 80 8200-000-77 4102-008 Air hose 1-1/2" 81 2401-502 | 4205-108-99 | Insert gasket | 79 | 8408-000-217 | Blowdown restrictor, 1/2" | | 4102-008 Air hose 1-1/2: | | Hose clamp, double bolt 1-1/2" | 80 | 8200-000-77 | Check Valve, 1/4" (Washdown Spray) | | | | Ar hose 1-1/2* | 81 | 2401-502 | Shubber tank drain ball valve, 1/4" (6.5cf 2-out) | ## 9.2(f) AmphiBlastTM 6.5 (2-Outlet) Electric Control System (Front) ## 9.2(g) AmphiBlastTM 6.5 (2-Outlet) Electric Control System (Right Side) ## 9.2(h) AmphiBlastTM 6.5 Electric 2-Outlet Panel Schematic (Back View) Copyright © 2020 Axxiom Manufacturing, Inc. ## 9.3(a) AmphiBlastTM 4.5 Pneumatic 1-Outlet Control System Diagram Copyright © 2020 Axxiom Manufacturing, Inc. ## 9.3(b) AmphiBlastTM 6.5 Pneumatic 2-Outlet Control System Diagram Copyright © 2020 Axxiom Manufacturing, Inc. ## 9.3(c) AmphiBlastTM 4.5 Electric 1-Outlet Control System Diagram ## 9.3(d) AmphiBlastTM 6.5 Electric 2-Outlet Control System Diagram ## 9.4 Thompson® Valve II with Diverter Plate ## 9.5 Automatic Air Valve | | 2123-106 | 1" Valve | | 2123-107 | 1 1/4" Valve | ** | 2123-108L | 1-1/2" High Flow Valve | |-------|----------------|-----------------------|-------|----------------|-----------------------|-------|----------------|--------------------------| | No. | Part No. | Description | _ | 2123-108 | 1 1/2" Valve | | 2123-109 | 2" Valve | | | 2123-006-99 | Replacement Parts Kit | No. | Part No. | Description | No. | Part No. | Description | | 3 | 2123-006-97 | Hard Parts Kit | | 2123-007-99 | Replacement Parts Kit | _ | 2123-009-99 | Replacement Parts Kit | | 1.* | 2123-007-20 | Gasket | | 2123-007-97 | Hard Parts Kit | | 2123-009-97 | Hard Parts Kit | | 2.* | 2123-006-02 | Diaphragm | 1.* | 2123-009-01 | Gasket | 1.* | 2123-009-01 | Gasket | | 3.* | 2123-006-03 | O-ring | 2.* | 2123-007-02 | Diaphragm | 2.* | 2123-009-02 | Diaphragm | | 4. | 2123-006-04 | Retainer Bushing | 3.* | 2123-007-03 | O-ring | 3.* | 2123-009-03 | O-ring | | 5.* | 2123-007-05 | O-ring | 4. | 2123-007-04 | Retainer Bushing | 4. | 2123-009-04 | Retainer Bushing | | 6,+ | 2123-006-06 | Disk Retainer | 5.* | 2123-007-05 | O-ring | 5.* | 2123-009-05 | O-ring | | 7.* | 2123-006-07 | O-ring | 6.+ | 2123-007-06 | Disk Retainer | 6.+ | 2123-009-06 | Disk Retainer | | 8. | 2123-006-08 | Seat | 7.* | 2123-007-07 | O-ring | 7.* | 2123-009-07 | O-ring | | 9,+ | 2123-006-09 | Disc Plate | 8. | 2123-007-08 | Seat | 8. | 2123-009-08 | Seat | | 10. | "Deleted" | Lock Washer, Internal | 9.+ | 2123-007-09 | Disc Plate | 9.+ | 2123-007-15 | Disc Plate | | 11.* | 7082-504 | Lock Nut | 10. | "Deleted" | Lock Washer, Internal | 10. | "Deleted" | Lock Washer, Internal | | 12. | 2123-106-12 | Cap | 11.* | 7082-504 | Lock Nut | 11.* | 7082-506 | Lock Nut | | 13.* | 2123-006-13 | Lock Nut | 12. | 2123-107-12 | Сар | 12. | 2123-109-12 | Cap | | 14. | 7010-503-06 | Cap Screw | 13.* | 7082-506 | Lock Nut | 13.* | 7082-506 | Lock Nut | | 15.+ | 2123-006-15 | Diaphragm Plate | 14. | 7010-503-07 | Cap Screw | 14. | 7010-505-07 | Cap Screw | | 17. | 7082-503 | Lock Nut | 15.+ | 2123-007-15 | Diaphragm Plate | 15.+ | 2123-009-15 | Diaphragm Plate | | 18. | 2123-006-18 | Body, 1" | 17. | 7082-503 | Lock Nut | 17. | 7082-505 | Hex Nut | | 19.** | 2123-006-19 | Shaft | 18. | 2123-007-18 | Body, 1 1/4" | 18. | 2123-009-27 | Body, 1-1/2" high flow | | 20.* | 2123-007-20 | Gasket | | 2123-008-18 | Body, 1 1/2" | | 2123-009-18 | Body, 2" | | 21.* | 2123-006-21 | Disc | 19.** | 2123-007-19 | Shaft | 19.** | 2123-009-19 | Shaft | | 22.** | 2123-106-22 | O-ring | 20.* | 2123-007-20 | Gasket | 20.* | 2123-009-01 | Gasket | | 23.+ | 2123-106-23 | Spring Retainer | 21.* | 2123-007-21 | Disc | 21.* | 2123-009-21 | Disc | | 24. | 2123-106-24 | Spring | 22.** | 2123-107-22 | O-ring | 22.** | 2123-107-22 | O-ring | | 25.* | 2014-300 | Vent, 1/8" | 23,+ | 2123-107-23 | Spring Retainer | 23.+ | 2123-109-23 | Spring Retainer | | 26,* | 2123-007-20 | Gasket | 24. | 2123-107-24 | Spring | 24. | 2123-109-24 | Spring | | * In | cluded in Repi | acement Parts Kit | 25.* | 2014-300 | Vent, 1/8" | 25.* | 2014-300 | Vent, 1/8" | | + In | cluded In Hard | Parts Replacement Kit | 26.* | 2123-009-01 | Gasket | 26.* | 2123-009-28 | Washer | | | | -0. | * In | cluded in Repl | acement Parts Kit | * | Included In Re | placement Parts Kit | | | | | + In | cluded in Hard | Parts Replacement Kit | + | Included In Ha | rd Parts Replacement Kit | ** 1-1/2" High Flow Valve is Standard On Units Manufactured After July 1, 2008 NOTE: With spring closed valve air flow is in opposite direction from arrow on valve body. ## **9.6** Control Valves (Pneumatic and Electric) | | 2229-000 | Pneumatic Control Valve | |--------|-----------------|--| | | 2229-100 | Electric Control Valve, 12 Volt D.C. | | | 2229-101 | Electric Control Valve, 12 Volt A.C. | | | 2229-102 | Electric Control Valve, 24 Volt D.C. | | | 2229-100 | Electric Control Valve, 24 Volt A.C. | | | 2229-105 | Electric Control Valve, 120 Volt A.C. | | No. | Part No. | Description | | | 2229-000-99 | Replacement Parts Kit (Pneumatic) | | | 2229-100-99 | Replacement Parts Kit (Electric) | | 1. | Not Available | Air Operator Cap | | 2.*+ | 2229-000-02 | Plunger w/O-Rings | | 3. | Not Available | Valve Body | | 4.*+ | 2229-000-04 | Spring | | 5. | Not Available | Spring Retainer | | 6.*+ | 2229-000-06 | Filter Disk | | 7.*
 2229-000-07 | O-Ring (Large) | | 8. | Not Available | Screw (8) | | 9. | 2229-000-09 | Air Operator Assembly | | 10.*+ | 2229-000-10 | O-Ring (2 ea) | | 11. | Not Available | Electric Operator Cap | | 12. | Not Available | Coll Cover Bottom | | 13. | 2229-100-03 | Coil 12 Volt D.C. | | | 2229-101-03 | Coil 12 Volt A.C. | | | 2229-102-03 | Coil 24 Volt D.C. | | | 2229-100-03 | Coll 24 Volt A.C. | | | 2229-105-03 | Coll 120 Volt A.C. | | 14. | Not Available | Coll Cover | | 15. | Not Available | Nut | | 16. | 2229-100-06 | Solenoid Pilot Assembly, 12 Volt D.C. | | | 2229-101-06 | Solenoid Pilot Assembly, 12 Volt A.C. | | | 2229-102-06 | Solenoid Pilot Assembly, 24 Volt D.C. | | | 2229-100-06 | Solenoid Pilot Assembly, 24 Volt A.C. | | | 2229-105-06 | Solenoid Pilot Assembly, 120 Volt AC | | 17. + | 2229-100-07 | Gasket (Electric Only) | | * Incl | uded in replace | ment parts kit-pneumatic | | | | A CONTRACTOR OF THE PROPERTY O | ## 9.7 Water Control Valve | | 8200-000-09 | Water Control Valve | |-------|------------------|-----------------------| | No. | Part No. | Description | | | 8200-000-09R | Replacement Parts Kit | | 1. | Not Available | Air Operator Cap | | 2.* | Not Available | Plunger w/O-Rings | | 3. | Not Available | Valve Body | | 4.* | Not Available | Spring | | 5. | Not Available | Spring Retainer | | 6.* | Not Available | O-Ring (Large) | | 7. | Not Available | Screw (8) | | * Inc | luded in replace | ment parts kit | # 9.8(a) G2 Pneumatic Deadman | | 2263-002 | G2 Pneumatic Deadman | |-------------|-------------|--| | Item | Part No. | Description | | 3 | 2263-002-99 | G2 Replacement Parts Kit | | 1. | 2263-002-01 | G2 Deadman Lever | | 2. | 2263-002-02 | G2 Deadman Body | | * 3. | 2263-002-03 | G2 Deadman Cartridge Assembly | | 4. | 2263-002-04 | G2 Deadman Hinge Pin | | * 5. | 2263-002-05 | G2 Deadman Cartridge Set Screw | | 6. | 2263-002-06 | G2 Deadman Button | | * 7. | 2263-002-07 | Deadman Spring | | * 8. | 2263-000-08 | Deadman Screw For Button | | 9. | 3031-300-00 | Hex Nipple, 1/8" x 1/8" With Ball Seat | | 10. | 3031-302-02 | Hex Nipple, 1/4" x 1/4" With Ball Seat | | *11. | 2263-002-10 | G2 Deadman Dust Plug | Copyright © 2020 Axxiom Manufacturing, Inc. ## 9.8(b) Deadman Valves (Pneumatic) | | 2263-000 | Pneumatic Deadman | |---------|-------------|-------------------------| | No. | Part No. | Description | | 1980000 | 2263-000-99 | Replacement Parts Kit | | 1. | 2263-000-01 | Lever | | 2. | 2263-000-02 | Body | | *3. | 2263-000-03 | Cartridge | | 4. | 2263-000-04 | Hinge Pin | | * 5. | 2263-000-05 | Set Screw | | 6. | 2263-000-06 | Safety Button | | *7. | 2263-000-07 | Spring | | *8. | 2263-000-08 | Screw for Button | | 9. | 3031-302-00 | Hex Nipple, 1/8" x 1/4" | | 10. | 3031-300-00 | Hex Nipple, 1/8" x 1/8" | | | 2263-001 Pneumatic Deadman II | | | | | | | | | |------|-------------------------------|--------------------------------|---|-------------|----------------------------|--|--|--|--| | No. | Part No. | Description | No. | Part No. | Description | | | | | | | 2263-001-99 | Replacement Parts Kit Level I | 8. + | 2263-001-08 | Safety Flap | | | | | | | 2263-001-98 | Replacement Parts Kit Level II | 9.*+ | 2263-001-09 | Plunger Plug | | | | | | 1. | 2263-001-01 | Base | 10. | 2263-001-10 | Body Mounting Screw | | | | | | 2. + | 2263-001-02 | Safety Flap Spring | 11. | 2263-001-11 | Lever Spring | | | | | | 3. + | 2263-001-03 | Lever Hinge Screw | 12. + | 2263-001-12 | Flap Hinge Screw | | | | | | 4. | 2263-001-04 | Hinge Pin Nut | 13. | 3031-302-00 | Hex Nipple, 1/8" x 1/4" | | | | | | 5.*+ | 2263-001-05 | Body Gasket | 14. | 3031-300-00 | Hex Nipple, 1/8" x 1/8" | | | | | | 6.*+ | 2263-001-06 | Valve Body Assembly | * Included in replacement parts kit, Level I | | | | | | | | 7. | 2263-001-07 | Lever | * Included in replacement parts kit, Level II | | | | | | | ## 9.9 Deadman Switches (Electric) ^{*}Electric shock hazard. To minimize shock hazard, use electric deadman in low voltage applications only (12-24 volts). ## 9.10(a) AmphiBlastTM Injection Module ## 9.10(b) AmphiBlastTM Dual Port Injection Module ## 9.11 Abrasive Spider Adjustment (optional) | ITEM | QTY | PART NO. | DESCRIPTION | |------|-----|-------------|---------------------------------------| | 1 | 1 | 7001-000-98 | SPIDER STUDS INSTALLED | | 2 | 1 | 7001-000-02 | SPIDER DISK 9" | | 3 | 3 | 7001-000-03 | SPIDER SPACER, 1" | | 4 | 3 | 7001-000-04 | SPIDER SPACER, 3/4" | | 5 | 3 | 7001-000-05 | SPIDER SPACER, 2-1/4" | | 6 | 3 | 7119-002 | SAFETY PINS, AIR BLAST HOSE COUPLINGS | The optional abrasive spider is a device that is mounted in the top head of the abrasive blaster. The spider is installed on blasters that will be installed below an abrasive storage hopper. The spider creates a void area above the blaster abrasive inlet keeping the abrasive from sitting on top of the popup. Abrasive piled on top of the popup restricts movement and can prevent the popup from properly sealing. Pour abrasive into the vessel top head and allow it to flow in and form the areas of dead abrasive above the spider plate and to the sides as shown above. The gap should be approximately 1/4". The spider spacers can be removed to lower the spider disk. The spacers can be cut shorter if necessary. # **▲ WARNING** Pinch point hazard. Vessel pressurization will close the popup. Keep hands and fingers away from popup. Disconnect air supply prior to performing popup maintenance. # 9.12 Palm/Detent Control Valve | | 2229-301 | Palm/Detent Control Valve | |-------|------------------|---------------------------| | No. | Part No. | Description | | | 2229-301-99 | Replacement Parts Kit | | 1. | 2229-301-01 | Operator Cap | | 2.* | 2229-301-02 | Plunger w/O-Rings | | 3. | Not Available | Valve Body | | 4. | Not Available | Retainer | | 5. | Not Available | Plunger Bushing | | 6. | Not Available | Screw (8) | | 7. | Not Available | Mounting Nut | | 8. | Not Available | Knob | | * Inc | luded in replace | ment parts kit | THIS PAGE IS INTENTIONALLY BLANK | | | | commended Spare Replacement Parts Lists | |-------------|--------|----------------------|--| | |) ELEC | TRIC and PNEUM | ATIC CONTROLS (see note below & refer to Section 9.0 drawings) | | Item
No. | Qty. | Part No. | Description | | 2 | 1 | 4211-10 X | Air Inlet Crowfoot (specify piping size) | | 2 | 10 | 4211-999 | Crowfoot Gasket (specify piping size) | | 3 | 1 | 2401-50 X | Air Inlet Ball Valve (specify piping size) | | 4 | 1 | 2401-504 | Blowdown Ball Valve, 1/2" | | 5 | 1 | 2100-010 | Popup with Stem | | 6 | 1 | 2100-011 | Popup Gasket | | 8 | 1 | 2401-502 | Drain Ball Valve, 1/4" | | 9 | 1 | 2123-108 | Auto Air Valve, 1-1/2" (See Section 9.5) | | 9 | 1 | 2123-007-02 | Auto Air Valve Diaphragm (1-1/4" – 1-1/2") | | 9 | 5 | 2123-007-21 | Auto Air Valve Disc (1-1/4" – 1-1/2") | | 9 | 1 | 2123-107-24 | Auto Air Valve Spring (1-1/4" – 1-1/2") | | 9 | 1 | 2123-007-99 | Auto Air Valve Replacement Parts Kit (1-1/4" – 1-1/2") | | 10 | 1 | 4104-40 X-XX | Blast Hose Assembly (specify size and length) | | 11 | 1 | 500X- XXX | Blast Nozzle (specify size and type) | | 13 | 1 | 2401-508 | Choke Ball Valve, 1-1/2" | | 14 | 1 | 2152-008D | Thompson® Valve II w/Diverter, 1-1/2" (tungsten) (See Section 9.4) | | 14 | 1 | 2152-000-03 | Thompson Valve II Spring | | 14 | 1 | 2152-000-11 | Thompson Valve II Base, 1-1/2" | | 14 | 1 | 2152-000-98D | Thompson Valve II w/Diverter Replacement Part Seals Kit | | 14 | 1 | 2152-000-99D | Thompson Valve II w/Diverter Replacement Part Kit (tungsten carbide) | | 21 | 1 | 2014-300 | Breather Vent, 1/8" | | 22 | 1 | 7000-001-11 | Handway Crab Assembly, 6" x 8" | | 23 | 1 | 2302-204-95 | Filter Element (5 micron) | | 25 | 2 | 4215- XXX | Nozzle Holder (specify size and type) | | 26 | 2 | 4213-40 X -01 | Blast Hose Coupling, full port (specify size) See Section 5.12 | | 27 | 2 | 4214-408-02 | Threaded Coupling, 1-1/2" (full port)) See Section 5.24 | | 27 | 10 | 4214-999-02 | Coupling Gasket (full port) (fits hose and threaded couplings) | | 28 | 1 | 2000-010-99 | Slave Regulator Replacement Parts Kit | | 32 | 1 | 8200-000- XX | Injection Module (specify type) (See drawings in Section 9.0) | | 33 | 1 | 8200-000- XX | Spray Nozzle (specify type) (See drawings in Section 10.0) | | 34 | 2 | 7000-001-18 | Handway Gasket, 6" x 8" (SureFit™) | | 35 | 1 | 2013-402 | Dust Eliminator, 1/4" | | 36 | 2 | 4205-108 | Hose Insert, 1-1/2" | | 36 | 10 | 4205-108-99 | Insert Gasket, 1-1/2" | | 37 | 2 | 4235-008 | Hose Clamp, 1-1/2" Double Bolt (for field installation) | | 38 | 10ft | 4102-008 | Air Hose, 1-1/2" | | 39 | 10 | 4119-002 | Safety pin, air/blast hose coupling | | 40 | 2 | 8710-98778 | Hose Whip Check | | 44 | 1 | 2001-011-99 | Blast Pressure Regulator Replacement Parts Kit | | 45,49 | 1 | 8710-40007A | Pressure Gauge 0-160 psi | | 46 | 1 | 8200-000-26 | Wash Down Pressure Regulator 0-100 psi | | 47 | 1 | 8200-000-17 | Mode selector switch | | 48 | 1 | 2229-301-99 | Palm Button Control Valve Replacement Parts Kit | | 50 | 1 | 2006-002-99 | Water Differential Pressure Regulator Replacement Parts Kit | | 52 | 1 | 8200-000-09 | Water Control Valve | | 52 | 2 | 8200-000-09R | Water Control Valve Replacement Parts Kit | | 54 | 1 | 2401-907 | Abrasive Shut-Off Valve See Section 5.15 | | 58 | 1 | 2210-002-97 | Water Pump Air Drive Seal Kit | | 58 | 1 | 2210-002-98 | Water Pump Fluid Section Seal Kit | | 65 | 1 | 8710-92301S | Tri-clamp (spring loaded) | | 65 | 10 | 8710-98503 | Tri-Clamp O-ring | | 67 | 1 | 2229-000 | Pneumatic Control valve (blast signal) | | 67 | 1 | 2229-000-99 | Pneumatic Control valve Replacement Parts kit | | 82 | 2 | 8200-000-84 | Washdown orifice (dual injection module only) | | | 10.0 Recommended Spare Replacement Parts Lists (continued)
 | | | | | | | |---|--|----------------------|--|--|--|--|--|--| | B) ITEMS FOR PNEUMATIC CONTROLS ONLY (see note below) | | | | | | | | | | Item No. | Qty. | Part No. | Description | | | | | | | 12 | 1 | 2263- XXX | Pneumatic Deadman Valve (specify type) | | | | | | | 12 | 2 | 2263- XXX- 99 | Pneumatic Deadman Valve Replacement Parts Kit (specify type) | | | | | | | 15 | 1 | 4100-501-02 | Twinline Hose With ACO, 55ft. | | | | | | | 16,19,43 | 1 | 4224-301-02 | Quick Disconnect Socket, 1/4" | | | | | | | 17,18,42 | 1 | 4224-300-02 | Quick Disconnect Plug, 1/4" | | | | | | | 20,64 1 2229-000 Pneumation | | | Pneumatic Control Valve | | | | | | | 20,64 | 2 | 2229-000-99 | Pneumatic Control Valve Replacement Parts Kit | | | | | | | 62 | 1 | 2025-010 | Abrasive Cutoff Valve | | | | | | | | | C) ITEMS FO | OR ELECTRIC CONTROLS ONLY (see note below) | | | | | | | 12 | 1 | 2263-402-05 | Electric Deadman Switch with Plug (sealed connector) | | | | | | | 15 | 1 | 7075-055-03 | Extension Cord with ACO 55' (sealed connectors) | | | | | | | 16,19 | 1 | 7109-300-02 | Sealed Electric Connector, 3-Prong Female | | | | | | | 17,18 | 1 | 7109-301-02 | Sealed Electric Plug, 3-Prong Male | | | | | | | 20,64 | 1 | 2229-100 | Electric Control Valve, 12Vdc | | | | | | | 20,64 | 2 | 2229-100-99 | Electric Control Valve Replacement Parts Kit | | | | | | | 62 | 1 | 2025-100-02 | Abrasive Cutoff Switch | | | | | | **NOTE:** Determine the type of blast controls on the abrasive blaster (either electric or pneumatic). Then, the required list of spare parts is List "A" plus either List "B" or "C". For blasters with special options refer to supplemental drawing(s) included with this operation and maintenance manual. ## 11.0 Troubleshooting This section lists probable causes of problems that may occur during operation of the abrasive blaster. Not all the "probable causes" may apply to your abrasive blaster. The probable cause may not apply because of the control type and accessories on the abrasive blaster. Refer to Figure 11.1 and the drawings in Section 9.0. # **▲** DANGER Abrasive blasters are Pressurized Vessels. Propelled objects will cause serious injury or death. Depressurize vessel before performing any maintenance. See Section 6.2. #### 11.1 Malfunction with Deadman Lever in the "Off" Position #### 11.1.1. Blast air stops but abrasive will not shut off - (1) Trash stuck between plunger and seat in Thompson® Valve (#14) prevents closing. - (2) Defective valve plunger in Thompson Valve (worn by abrasive or broken). - (3) Defective sleeve in Thompson Valve (worn by abrasive). - (4) Blocked signal air hose to Thompson Valve (trash blockage or pinched hose). - (5) Defective or broken spring in Thompson Valve (check length of spring). - (6) Thompson Valve cap (or spring retainer) not screwed all the way down (hand tighten only). - (7) Control valve (#64) stuck in the "ON" position. #### 11.1.2. Abrasive stops but blast air will not shut off - (1) Defective or broken spring in automatic air valve (#9). - (2) Defective seat in automatic air valve. - (3) Blocked signal air hose to automatic air valve. - (4) Defective O-ring in automatic air valve (around shaft). - (5) Control valve (#20) stuck in the "ON" position. #### 11.1.3. Both blast air and abrasive will not shut off - (1) Twinline hoses to deadman valve (#12) are crossed. - (2) Non-Schmidt deadman (#12) has been installed. - (3) Control valves (#20 & #64) stuck in the "ON" position. - (4) Blocked twinline hose. - (5) Defective deadman valve (#12). Pneumatic deadman cartridge plunger stuck in the "ON" position (down). Cartridge plunger is visible below deadman handle. #### 11.1.4. Blast outlet turns on accidentally - (1) The deadman lever (#12) is worn out. - (2) The safety button on the deadman is missing. See drawings in Sections 9.8 and 9.9. - (3) A bleeder type deadman valve has been installed. A bleeder type deadman valve *is not safe* because a particle of dirt from the air hose can plug the bleed hole and cause the blast outlet to turn on. See *Warnings* and *Rules for Safer Operation* in Section 1.0. - (4) Defective electric deadman switch or electric wiring (check for an electric short). Figure 11.1 – AmphiBlast™ With Pneumatic Blast Controls #### 11.2 Malfunction with Deadman Lever in the "On" Position #### 11.2.1. Air blasts with no abrasive - (1) Check abrasive level in blast vessel (even if optional second outlet blasts normally). - (2) Blocked control air hose to Thompson® Valve (#14) prevents opening. - (3) Thompson Valve (#14) plunger stuck in closed position. - (4) Trash plugging opening from tank to Thompson Valve (#14). See Section 11.3. - (5) Insufficient air pressure to open Thompson Valve (fully open requires 80 psig). - (6) Abrasive flow problems. See Section 11.3. - (7) Defective Thompson Valve piston seal (air will leak from breather). - (8) Blast vessel leak (popup or handway) reduces pressure slowing abrasive flow. - (9) Control valve (#20) stuck in exhaust position or midway (air will leak from breather #35). - (10) Defective abrasive cutoff valve or switch (#62). - (11) Thompson Valve (#14) outlet clogged with wet abrasive because full fort threaded coupling (#27) is not installed on outlet of injection module (#32). See Section 5.24. #### 11.2.2. Abrasive choking out of blast hose with low blast air pressure - (1) Thompson Valve (#14) abrasive adjustment knob is open too far. - (2) Control air hose to automatic air valve (#9) blocked, pinched, or leaking prevents opening. - (3) Choke valve (#13) is partially closed causes differential pressure increases abrasive flow. - (4) Low air compressor output cfm (unit may cycle on and off). See Section 3.0. - (5) Blocked automatic air valve (#9) breather vent (#21) prevents full opening. - (6) Control valve (#64) stuck in exhaust position or midway (air will leak from breather #35). #### **11.2.3. Reduced Pressure at The Nozzle** (with or without abrasive flow) - (1) Low air compressor output CFM. See Section 3.0 to determine air requirements. - (2) Air supply hose to blaster is too small. See Section 3.0. - (3) Thompson Valve abrasive adjustment knob (#14) is open too far. - (4) Check for leaks in blast vessel (popup or handway) or control piping. - (5) Choke valve (#13) is partially closed. - (6) Blocked automatic air valve (#9) breather vent (#21) prevents full opening. - (7) Trash blocking the blast nozzle orifice (#11). Release deadman and allow the air pressure in the blast hose (#10) to dissipate. Close the air inlet ball valve (#3). **Note:** Only after the air in the blast hose has dissipated then remove the blast nozzle (#21) and clear blockage. ## **▲** DANGER Confirm the air in the blast hose has dissipated before removing the blast nozzle. Squeeze or step on the blast hose. Firmness or stiffness indicates that the blast hose is pressurized. Do Not attempt to remove the blast nozzle. Allow the air to dissipate before proceeding. # **▲** WARNING Do Not aim the blast nozzle towards yourself or any person. A system malfunction or a blocked blast nozzle that clears can trigger accidental start up resulting in injury to personnel. #### 11.2.4. Blast is slow to turn on or will not turn on when deadman lever is pressed down. - (1) Check quick couplings (#16, #17 & #42) on control hoses to see if they are connected properly. - (2) Control valves (#20 & #64) stuck in exhaust position or midway (air will leak from breather #35). - (3) 1/2" air filter (#23) blocked; restricts air flow to deadman. - (4) Twinline control hoses (#15) are blocked. - (5) Cartridge in deadman valve (#12) is blocked. - (6) Low air compressor output CFM (unit may cycle on and off). See Section 3.0. - (7) Air leaks in twinline hose (#15) from the deadman valve (#12) to control valves (#20 & #64). - (8) Trash blocking the blast nozzle orifice (#11). See Item (7) in Section 11.2.3 above. - (9) Blocked automatic air valve (#9) breather vent (#21) prevents full opening. #### 11.2.5. Air and abrasive blasts with no or inconsistent water - (1) Water differential pressure (#51) is too low. - (2) Low water level in water tank (#57) (pump will cycle continuously). - (3) Water tank outlet ball valve (#71) is closed (pump will cycle continuously). - (4) Hose from water tank (#57) to water pump (#58) is blocked (pump will cycle continuously). - (5) Water filter/strainer (#59) screen is clogged (pump will cycle continuously). - (6) Air supply hose to water pump (#58) is blocked (pump will not be cycling). - (7) Water shut-off valve (#52) is stuck in "OFF" position. - (8) Water pump malfunction. Refer manufacturer's manual troubleshoot in Section 14.0. - (9) Insufficient air supply to unit (inconsistent water). See Section 5.19. - (10) A clogged strainer (#74) can cause a malfunction to water shut-off valve (#52) #### 11.3 Notes on Abrasive Flow Problems #### 11.3.1. Thompson® Valve operation If abrasive flow is a problem, remember; the Thompson Valve only opens and closes. The total travel to full open is approximately 3/4 of an inch. This can be quickly checked with the adjustment knob on the abrasive valve. For this procedure manually close the choke valve (#13) and the media shut-off valve to stop blast flow. This test is to verify that the Thompson Valve is opening. With the deadman off, screw the Thompson Valve knob down until it stops. Notice that the knob turns easily when the deadman is off. Next, back the knob out 3/4 of an inch or slightly less, then press the deadman lever down to open the Thompson Valve. The knob should get tight or more difficult to turn because the valve has opened against the adjustment. This guarantees that the valve is fully open. If the material will not flow with the valve fully open, you have an abrasive flow problem, not a problem
with the Thompson Valve. The abrasive may be wet, or there may be trash blocking the opening. Try choking the blast outlet to clear the opening. Proceed to step 11.3.2. If the knob does not get tighter during this test troubleshoot the controls and the Thompson Valve piston seal. # **A** DANGER Do Not hammer on any part of the pressure vessel to improve abrasive flow. This can cause cracks that may lead to pressure vessel rupture. #### 11.3.2. Choking the blast outlet The choke valve (#13) is used to clear any trash that may get into the blast vessel and block the Thompson abrasive valve orifice. Whenever trash (paint chip, cigarette butt, etc.) blocks the abrasive valve orifice, the procedure is to fully open the valve by turning the knob counterclockwise, then press down the deadman lever (#12) to begin blasting. While blasting, have an assistant close the choke valve completely for about one second. This creates differential pressure at the abrasive valve (high pressure above; low pressure below). The higher pressure from the blast vessel should be enough to loosen the trash blocking the abrasive valve orifice and blast it through the blast nozzle (#11). To minimize excess wear of the Thompson Valve, keep the choke valve fully open during normal blasting. If the blaster is equipped with the abrasive cutoff feature set the valve (or switch) to the on-position for the choke procedure. **Note:** The Thompson Valve II includes a cleanout port to use for this procedure. See the valve drawings in Section 9.4 (Item 27). # **▲** WARNING Trash cleared during the choking process may block the nozzle orifice. Refer to Item (7) in Section 11.2.3 for procedure to clear nozzle. #### 11.3.3. Blast control hoses Remember, the blaster controls and valves are normally closed. Therefore, the control hoses are depressurized to turn the blast off and pressurized to turn the blast on. If a needle gauge is available, it is the quickest way to check to see if there is pressure in the control hoses. If no needle gauge is available, disconnect each control hose fitting one at a time until the problem is located. #### 11.3.4. Contaminated Abrasive Air quality is crucial to the operation of an abrasive blaster. Moisture and contaminants can cause components to malfunction. Moisture condensation in a blast system causes abrasive flow problems. Condensation occurs when the hot vapor-filled compressed air cools as it reaches the abrasive blaster. Water droplets formed during condensation can be absorbed by the abrasive in the blast vessel which can cause erratic flow to the abrasive valve. To minimize the chance of abrasive flow problems a moisture removal device installed for the blast system air supply is highly recommended (i.e. coalescing moisture separator, air-cooled aftercooler, or deliquescent dryer). Contact a local authorized Schmidt® distributor or Axxiom Manufacturing, Inc. to locate one near you. ## **▲** DANGER Do Not hammer on any part of the pressure vessel to improve abrasive flow. This can cause cracks that may lead to pressure vessel rupture. #### 11.3.5. Recycled Abrasives Used and recycled abrasives can contain trash & coating particles removed from previously blasted items (particularly sticky coatings) that can cause abrasive to clump together and block the metering valve orifice and stop flow. Prior to use recycled abrasive must be passed through a screen with openings no larger than 1/4" round. Some applications may require smaller openings. Refer to Section 11.3.4. Trash in recycled abrasive can also prevent the abrasive valve plunger from properly seating. The result will be air leakage at the blast nozzle in the off mode. This leak will gradually worsen due to the blasting effect of the leak. This leak will cause premature wear of the seating, plunger, and sleeve. ## NOTICE Recycled abrasive can contain trash that can cause equipment malfunction. Prior to use, recycled abrasive must be passed through a screen with openings no larger than 1/4" round. Some applications may require smaller openings. | Notes | | | | |-------|--|--|--| ## 12.0 Warranty and Reference Information ## 12.1 Warranty This following section is to be used as a guide in determining warranty policies and procedures for SCHMIDT® products. It is to be used in determining whether a warranty is justified and as a procedural guide in completing a SCHMIDT warranty claim. ## **12.2** Warranty Policy - 1. All SCHMIDT products are guaranteed to be free of defects in material and workmanship at time of shipment. Axxiom Manufacturing, Inc. warrants its products against defects in material and workmanship under normal and proper use for a period of ninety (90) days from the date of delivery. Such warranty is extended only to the buyer who purchases the equipment directly from Axxiom Manufacturing, Inc., or its authorized distributors. This warranty does not include expendable parts such as, but not limited to, hoses, nozzles, and seals. - 2. The obligation under this warranty is strictly limited to the replacement or repair, at Axxiom's option, of machines and does not include the cost of transportation, loss of operating time, or normal maintenance services. Axxiom Manufacturing, Inc. shall have no liability for labor, consequential damages, freight, or special charges. - 3. This warranty does not apply to failure occurring due to abuse, misuse, negligence, corrosion, erosion, normal wear and tear, alterations or modifications made to the machine without express written consent of Axxiom Manufacturing, Inc. - 4. Warranty requests must be submitted in writing within thirty (30) days after failure. - 5. Written authorization to return merchandise under warranty must first be obtained from Axxiom Manufacturing, Inc. In no case is merchandise to be returned to Axxiom for credit without authorization. At the time of authorization, Axxiom will issue a return authorization number that must be included on all packages and correspondence. Any material returned without prior authorization will remain the property of the sender and Axxiom will not be responsible for it. - 6. All returns must be shipped prepaid freight. All returns may be exchanged for other equipment or parts of equal dollar value. If goods are not exchanged, they are subject to a 20% restocking charge. Any cost incurred by Axxiom Manufacturing, Inc. to restore such goods to first class condition will be charged to the customer. - 7. Axxiom Manufacturing, Inc. reserves the right to inspect and make the final decision on any merchandise returned under warranty. - 8. Axxiom Manufacturing, Inc. offers no warranty with respect to accessories, including but not limited to, engines, motors, batteries, tires, and any other parts not manufactured by Axxiom Manufacturing, Inc., but which the original manufacturer warrants. - 9. Axxiom Manufacturing, Inc. reserves the right to make product changes or improvements without prior notice and without imposing any obligation upon itself to install the same on its products previously sold. - 10. The above warranty conditions can only be altered by Axxiom Manufacturing, Inc. Axxiom must confirm alterations in writing for each specific transaction. - 11. Axxiom Manufacturing, Inc. reserves the right to establish specific warranty terms for used or demo machines on an individual transaction basis. Invoices covering such merchandise will clearly state the provisions of the applicable warranty for each specific transaction. - 12. USE OF NON-ORIGINAL SCHMIDT® FACTORY REPLACEMENT PARTS ON ANY SCHMIDT EQUIPMENT VOIDS ALL WARRANTIES. - 13. AXXIOM MANUFACTURING, INC. DOES NOT AUTHORIZE ANY PERSON, REPRESENTATIVE OR SERVICE OR SALES ORGANIZATION TO MAKE ANY OTHER WARRANTY OR TO ASSUME ON BEHALF OF AXXIOM MANUFACTURING, INC. ANY LIABILITY IN CONNECTION WITH THE SALE OF OUR PRODUCTS OTHER THAN THOSE CONTAINED HEREIN. - 14. UNDER NO CIRCUMSTANCES SHALL AXXIOM MANUFACTURING, INC. BE LIABLE TO CUSTOMER OR ANY OTHER PERSON FOR ANY DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT OR ARISING OUT OF ANY BREACH OF ANY WARRANTY OR FOR ANY SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER, INCLUDING WITHOUT LIMITATIONS, DAMAGES FOR ANY LOSS OF GOODWILL, WORK STOPPAGE, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES. - 15. AXXIOM MANUFACTURING, INC. MAKES NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE SCHMIDT PRODUCTS SOLD PURSUANT THERETO. ## 12.3 Trademarks, Patents, and Proprietary Statements Schmidt®, the Schmidt stylized "S" logo, Thompson®, Microvalve®, MV2®, Tera Valve®, and ComboValve® are registered trademarks owned by Axxiom Manufacturing, Inc. Use of Schmidt, the Schmidt stylized "S" logo, Thompson, Microvalve, MV2, Tera Valve, and ComboValve trademarks without the written consent of Axxiom Manufacturing is strictly prohibited. Products manufactured and marketed by Axxiom Manufacturing, Inc. are protected by patents issued or pending in the United States and other countries. The text, diagrams, and drawings contained in this manual are proprietary information intended solely for instruction in the operation of the specified equipment. Use of any text, diagrams, or drawings contained in this manual for any reason other than its intended purpose without the written consent of Axxiom Manufacturing, Inc. is strictly prohibited. ## 12.4 Safety Information Sources #### Axxiom Manufacturing, Inc This equipment and all Schmidt® equipment are manufactured exclusively by Axxiom Manufacturing, Inc. If any operational or safety related questions arise relating to this equipment contact Axxiom Manufacturing, Inc. Phone: 1-800-231-2085 Website: www.AxxiomMfg.com Axxiom
Manufacturing, Inc. 11927 South Highway 6 Fresno, Texas 77459 Occupational Safety and Health Administration (OSHA) establishes and enforces regulations regarding safety practices in the workplace including the abrasive blasting industry. Any questions, reporting of work-related injuries, or reporting of unsafe work practices can be made to the following contact information. Answers to most any safety related questions can be found at the OSHA website shown below. Phone: 1-800-321-6742 Website: <u>www.osha.gov</u> U.S. Department of Labor Occupational Safety and Health Administration 200 Constitution Avenue, NW Room Number N3626 Washington D.C. 20210 **National Institute of Occupational Safety and Health (NIOSH)** is a federal agency responsible for conducting research and recommendations for the prevention of work-related injuries and sickness. Phone: 1-800-232-4636 Website: www.cdc.gov/niosh National Institute of Occupational Safety and Health Patriots Plaza 1 395 E Street, SW, Suite 9200 Washington, DC 20201 American National Standards Institute (ANSI) coordinates the development and use of voluntary consensus standards including safety standards. Phone: 1-202-293-8020 Website: <u>www.ansi.org</u> American National Standards Institute 1899 L Street, NW 11th Floor Washington, DC 20036 ## 12.5 Surface Preparation Information Sources The Society for Protective Coatings (SSPC) consists of research and testing committees, conducts seminars, and establishes industry standards on surface preparation methods, abrasive and coatings. Phone: 1-877-281-7772 Website: www.sspc.org The Society for Protective Coatings 800 Trumbull Dr. Pittsburg, PA 15205 National Association of Corrosion Engineers (NACE) develops test methods and recommended practices on surface preparation techniques and coatings. Phone: 1-800-797-6223 Website: www.nace.org National Association of Corrosion Engineers 15835 Park Ten Place Houston, TX 77084 ## 12.6 Table of Blast Abrasive Characteristics | Abrasive
Type | Hardness
(Mohs) | Grain
Shape | Density
Lbs/ft3 | Color | Free Silica
Content | No. of
Recycles | Initial
Cost | Typical Use | |-----------------------|--------------------|----------------|--------------------|------------|------------------------|--------------------|-----------------|---| | Corn Cobs | 2 | angular | 35-45 | tan | none | 4-5 | low | stripping paint from delicate substrates | | Sodium
Bicarbonate | 2.8 | crystal | 60 | white | none | 4-5 | medium | cleaning and stripping paint from delicate substrates | | Walnut Shell | 3 | angular | 45 | lt. brown | none | 4.5 | low | stripping paint from delicate substrates | | Plastic | 3.2 | angular | 45-60 | white | none | 8-10 | medium | Paint stripping, deburring, and cleaning | | Glass Beads | 4.5 | spherical | 90 | crystal | none | 8-10 | low | cleaning
finishing | | Starblast XL | 6.5 | spherical | 128 | lt. brown | <1% | 4-5 | medium | outdoor blasting | | Coal Slag | 7 | angular | 85 | black | none | 1-2 | medium | outdoor blasting | | Copper Slag | 7 | angular | 112 | black | none | 1-2 | medium | outdoor blasting | | Garnet | 7 | angular | 147 | pink | <2% | 4-5 | medium | outdoor blasting | | Steel Shot | 8 | spherical | 280 | steel grey | none | 200 | low | cleaning and peening | | Steel Grit | 8 | angular | 230 | steel grey | none | 200 | medium | removing heavy scale | | Aluminum
Oxide | 9 | angular | 120 | brown | <1% | 6-8 | medium | cleaning and finishing,
deburring and etching | ## **NOTES** ## 13.0 Blasting Data #### 13.1 Table 1 Approximate Air Consumption (CFM) Per Blast Nozzle | | | NOZZLE PRESSURE | | | | | | | |-------|--------|-----------------|--------|--------|--------|---------|---------|---------| | NOZZL | E SIZE | 60 psi | 70 psi | 80 psi | 90 psi | 100 psi | 120 psi | 140 psi | | No.2 | 1/8" | 14 | 16 | 18 | 20 | 22 | 26 | 30 | | No.3 | 3/16" | 32 | 36 | 41 | 45 | 49 | 58 | 66 | | No.4 | 1/4" | 57 | 65 | 72 | 80 | 90 | 105 | 121 | | No.5 | 5/16" | 90 | 101 | 113 | 125 | 140 | 160 | 185 | | No.6 | 3/8" | 126 | 145 | 163 | 182 | 200 | 235 | 270 | | No.7 | 7/16" | 170 | 193 | 215 | 240 | 270 | 315 | 360 | | No.8 | 1/2" | 230 | 260 | 290 | 320 | 350 | 410 | 470 | | No.10 | 5/8" | 360 | 406 | 454 | 500 | 550 | 640 | 740 | | No.12 | 3/4" | 518 | 585 | 652 | 720 | 790 | 925 | 1060 | #### 13.2 Table 2 Abrasive Consumption (lbs. per hour) Per Blast Nozzle | | | NOZZLE PRESSURE | | | | | | |------------|-----------|-----------------|--------|--------|---------|---------|---------| | NOZZLE SIZ | ZE 60 psi | 70 psi | 80 psi | 90 psi | 100 psi | 120 psi | 140 psi | | No.2 1/8 | 3" 90 | 105 | 115 | 130 | 140 | 165 | 190 | | No 3 3/16 | 5" 205 | 230 | 260 | 290 | 320 | 375 | 430 | | No.4 1/4 | 365 | 420 | 460 | 500 | 560 | 660 | 760 | | No.5 5/16 | 5" 575 | 650 | 725 | 825 | 900 | 1050 | 1200 | | No.6 3/8 | 840 | 945 | 1050 | 1155 | 1260 | 1475 | 1700 | | No.7 7/16 | 5" 1150 | 1300 | 1450 | 1600 | 1750 | 2050 | 2350 | | No.8 1/2 | 2" 1460 | 1660 | 1850 | 2000 | 2250 | 2650 | 3000 | | No.10 5/8 | 3" 2290 | 2600 | 2900 | 3125 | 3520 | 4100 | 4750 | | No.12 3/4 | 3300 | 3750 | 4180 | 4500 | 5060 | 5950 | 6800 | #### 13.3 Table 3 Hose Selection Guide (blasting @ 100 Psi) | NOZZLE SIZE | No.4 1/4'' | No.5 5/16" | No.6 3/8" | No.7 7/16" | No.8 1/2" | |-------------------------|------------|------------|-----------|------------|-----------| | CFM @ 100psi | 90 | 140 | 200 | 270 | 350 | | AIR HOSE | 1 1/4" | 1 1/4" | 1 1/2" | 1 1/2" | 2" | | BLAST HOSE | 1" | 1 1/4" | 1 1/4" | 1 1/2" | 1 1/2" | | ABRASIVE (lbs. per hr.) | 560 | 900 | 1260 | 1750 | 2250 | #### 13.4 Additional Information on Blasting Productivity Air volume and pressure are very important. The blasting production rate will increase with higher blasting pressures and decrease with lower blasting pressures. The National Association of Corrosion Engineers' data suggests that for each 1 psi reduction in nozzle pressure, there is a 1.5% production loss. Pressure drop through a Schmidt® blast unit is normally less than 1 psi, while blast units manufactured by some of our competitors have pressure losses as high as 12 psi resulting in an 18% loss of production. Air pressure loss can also be avoided by using the shortest possible hose of adequate size. The inside diameter of both the blast hose (other than whip hose) and the air hose should be approximately three times the diameter of the orifice in the blast nozzle. Standard Schmidt blast units are rated for a maximum pressure of 150 psi. However, equipment manufactured prior to 2005 can be rated at 125psi. Refer to pressure vessel nameplate. #### 13.5 Table 4 Water Flow while blasting | | DIFFERENTIAL PRESSURE | | | | | |-----------------------|-----------------------|-------|-------|-------|-------| | BLAST PRESSURE:80 PSI | 5 | 10 | 15 | 20 | 25 | | GPM (gal/min) | 0.156 | 0.171 | 0.203 | 0.234 | 0.249 | | GPH (gal/hr.) | 9.35 | 10.29 | 12.16 | 14.03 | 14.96 | MLP-20/46F # Technical Specifications and Performance Data # Spécifications Techniques & Données de Performance # Technische- und Leistungsdaten Specifiche Tecniche e Dati di Esecuzione Especificações Técnicas e Dados de Funcionamiento - 1/3 HP Pump Series M, MS, MCPV, MDSTV, 29723 Models - Pompes Série 1/3 HP Modèles M, MS, MCPV, MDSTV, 29723 - 1/3 PS Pumpenreihe M, MS, MCPV, MDSTV, 29723 Modelle - Serie Pompe 1/3 HP Modelli M, MS, MCPV, MDSTV, 29723 - Linha de Bombas Hidráulicas de 1/3 HP Modelos M, MS, MCPV, MDSTV e 29723 #### Introduction This brochure should be read in conjunction with Catalog MLP-46 and the assembly drawings when supplied as part of the O/M manual with a pump. #### Installation The Haskel pump can be mounted in any position and be secured by the two mounting brackets. Alternatively, the hydraulic inlet can be directly mounted to the top of a liquid tank. However, models with separation chamber construction (all MD, MCPV and 29723 models) should be mounted vertically so that any fluid leakage from the chamber vent port will not migrate into the air drive section. Pump can be mounted in a horizontal position providing the vent port is facing down. Do not pipe vent port back to fluid source. ## Air Drive System Other gases such as Nitrogen, CO₂, Natural Gas – even Sour Gas (H₂S) can be used as alternatives to compressed air when properly modified. Consult the factory for additional information. The air drive requires a minimum pressure of 25 psi (1.72 bar) to actuate the air cycling valve spool. However, 40 psi is the recommended minimum for long term reliable operation. The maximum air-drive pressure is 125 psi (8.5 bar). It is not necessary or desirable to use an airline lubricator. The air drive section of all Haskel liquid pumps are pre-lubricated at the time of assembly with Haskel lubrication 50866. The air drive requires no other means of lubrication. Install an air line filter and pressure regulator with a minimum of 1/4" NPT port size. Also review air system upstream and eliminate any restrictions to provide 1/4" minimum inside diameter. Install a shut-off/speed control valve, 1/4" NPT, at pump inlet port. ## **Hydraulic System** NOTE: Inlet fluid supply piping should not be less than 1/4" I.D. Restricting the fluid supply will result in lower outlet flow rates and cause pump to cavitate. Larger internal diameter piping should be used with heavy fluids or if suction head is >3 feet. **Caution:** Do not loosen liquid inlet or liquid outlet fittings of pump to facilitate make up of connections. These fittings must be tight to avoid leakage or damage. A suction filter must be installed in the liquid inlet line. 100 x 100 mesh is normally ample to protect the pump seals and check valves. ## Priming Install a valve of suitable working pressure to the pump outlet that is capable of being used as an air bleed to start up. Open air-control valve slowly. Allow pump to cycle for approximately fifteen
seconds pumping fluid through the valve. If adequately primed, close the valve. The pump will cycle slowly and then stall due to increase in output resistance. If pump does not stall, open the valve and repeat the procedure. ## Operation The pump model number indicates the ratio between the area of the air piston and the liquid piston. The liquid outlet pressure can be controlled quite accurately by regulating the air drive pressure. The pump will cycle rapidly initially and as it approaches an output pressure equal to the ratio times the air drive pressure, it will gradually slow down and finally "stall". Where it is necessary to obtain maximum outlet flow rates up to a pre-determined pressure, a Haskel Air Pilot Switch should be installed at the pump outlet to automatically stop the pump at the final pressure. The airline regulator should be set at 125 psi (8.6 bar). A Haskel relief valve to prevent over pressurization should also be fitted as a safety precaution. NOTE: A hand pump attachment can be fitted (for precision control or use without compressed air power) on all models. (Specify with –HP) #### Maintenance Disconnect pump from system and remove to a clean, well lit work bench with access to vice, tools, seal kits and spares. All parts removed for inspection should be washed in a suitable de-greasing agent such as Blue Gold or equivalent. Inspect all moving parts for wear or scratches. Damaged parts should be replaced. It is recommended that all seals and O-rings are replaced. Specially packed seal kits are available for Air Drive and Hydraulic Sections. Seal Kit Part Numbers are: Air Drive P/N 17178 (common to all standard models) | Hydraulic Section | Model No. | |---|-----------------------------------| | P/N 17179 (plus ratio no. e.g., 17179-21)
P/N 26410 (plus ratio no.) | M-21 thru -188
MS-21 thru -188 | | P/N 28247 (plus ratio no.) | MCPV-21 thru -110 | | P/N 51104 (plus ratio no.) | 29723-21thru -110 | | P/N 27901
P/N 53694 | MDTV-5, MDSTV-5
M-5 | | P/N 28696 | M-7 | | P/N 28695 | M-12 | | P/N 51239 | MS-7 | | P/N 51240 | MS-12 | #### Cross Section of Haskel M- and MS- Series Pump #### Air Drive Section The air piston has a spring return. Care should be taken when dismantling to prevent the spring from causing the top cap to fly off. The most common cause of air drive malfunction is O-ring 568011-21 on the end of spool 17157. Inspect this first and replace if necessary prior to retesting before further disassembly of air drive. Spool 17157 is most easily removed by removing the muffler upper cap and carefully opening the air drive valve to push the spool and sleeve assembly out with compressed air. The spool and sleeve can be contained by holding a cloth over the exhaust port. The air piston, air barrel, cycling valve and sleeve should be re-lubricated on assembly with Haskel Silicone Grease P/N 50866. Torque the tie rod nuts evenly to 50 in-lbs. Torque Value #### **Hydraulic Section** Accombly If dismantled for inspection and parts replacement use following torque values on re-assembly: | Assembly | rorque value | |---|---| | Inlet check valve, ratios -7, -12 | to 95 ft-lbs. | | Inlet check valve, ratios -21, -36 | to 50 ft-lbs. | | Inlet check valve, ratios -71, -110, -188 | to 125 ft-lbs. | | Outlet check valves, all ratios | to 50 ft-lbs, except -220 is 75 ft-lbs. | | | | When ordering spare parts advise pump serial no., model no., spare part no., and description. ## Troubleshooting Guide #### Pump will not cycle, pump bypasses air - Inadequate air - See comments on: Air drive systems, page 2 and air drive section, on this page. - Contaminated air system - Remove sleeve and cycling spool (under upper cap of muffler). Clean, inspect and lubricate with Haskel Lubricant 28442. #### False cycle, leak from pilot exhaust (top center of cap). - Leakage of pilot system. - Install new air section seal kit. #### Pump cycles without pumping or does not stall. - Check valve(s) not seating or leak in system. - d. Inspect check valve(s). First inlet check and then outlet check. #### Pump fluid appears at muffler (or vent port on separation models). - High pressure seal leakage. - e. Install new liquid section seal kit. ## Operating and Maintenance Instructions #### **CE Compliance Supplement** #### SAFETY ISSUES - f. Please refer to the main section of this instruction manual for general handling, assembly and disassembly instructions. - g. Storage temperatures are 25°F 130°F (-3.9°C 53.1°C). - h. Lockout/tagout is the responsibility of the end user. - i. If the machine weighs more than 39 lbs (18 kg), use a hoist or get assistance for lifting. - j. Safety labels on the machines and meanings are as follows: General Danger Read Operator's Manual - In an emergency, turn off the air supply. - Warning: If the pump(s) were not approved to ATEX, it must NOT be used in a potentially explosive atmosphere. - m. Pressure relief devices must be installed as close as practical to the system. - n. Before maintenance, liquid section(s) should be purged if hazard liquid was transferred. - o. The end user must provide pressure indicators at the inlet and final outlet of the pump. - p. Please refer to the drawings in the main instruction manual for spare parts list and recommended spare parts list. Our products are backed by outstanding technical support, and excellent reputation for reliability, and world-wide distribution. Nos produits sont fournis par un support technique externe, une excellente réputation concernant la fiabilité, et la distribution mondiale. Unsere Produkte werden durch herausragende technische Unterstützung, exzellente Verlässlichkeit und globalen Vertrieb unterstützt. I nostri prodotti sono dotati di eccezionali supporti tecnici, eccellente reputazione di affabilità, e distribuzione globale. Nossos produtos têm o respaldo de uma excelente assistência técnica, uma grande reputação de confiabilidade e um eficiente sistema de distribuição em todo o mundo. #### LIMITED WARRANTY Haskel manufactured products are warranted free of original defects in material and workmanship for a period of one year from the date of shipment to first user. This warranty does not include packings, seals, or failures caused by lack of proper maintenance, incompatible fluids, foreign materials in the driving media, in the pumped media, or application of pressures beyond catalog ratings. Products believed to be originally defective may be returned, freight prepaid, for repair and/or replacement to the distributor, authorized service representative, or to the factory. If upon inspection by the factory or authorized service representative, the problem is found to be originally defective material or workmanship, repair or replacement will be made at no charge for labor or materials, F.O.B. the point of repair or replacement. Permission to return under warranty should be requested before shipment and include the following: The original purchase date, purchase order number, senal number, model number, or other pertinent data to establish warranty claim, and to expedite the return of replacement to the owner. If unit has been disassembled or reassembled in a facility other than Haskel, warranty is void if it has been improperly reassembled or substitute parts have been used in place of factory manufactured parts. Any modification to any Haskel product, which you have made or may make in the future, has been and will be at your sole risk and responsibility, and without Haskel's approval or consent. Haskel disclaims any and all liability, obligation or responsibility for the modified product, and for any claims, demands, or causes of action for damage or personal injuries resulting from the modification and/or use of such a modified Haskel product. HASKEL'S OBLIGATION WITH RESPECT TO ITS PRODUCTS SHALL BE LIMITED TO REPLACEMENT, AND IN NO EVENT SHALL HASKEL BE LIABLE FOR ANY LOSS OR DAMAGE, CONSEQUENTIAL OR SPECIAL, OF WHATEVER KIND OR NATURE, OR ANY OTHER EXPENSE WHICH MAY ARISE IN CONNECTION WITH OR AS A RESULT OF SUCH PRODUCTS OR THE USE OF INCORPORATION THEREOF IN A JOB THIS WARRANTY IS EXPRESSLY MADE IN LIEU OF ALL OTHER WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE, OTHER THAN THOSE EXPRESSLY SET FORTH ABOVE, SHALL APPLY TO HASKEL PRODUCTS. Haskel International Inc. 100 East Grahm Place Burbank, CA 91502 USA Tel: 818-843-4000 Email: sales@haskel.com www.haskel.com